Considerations on the relaxation time in shear-driven jamming.
Phys Rev E
; 109(6-1): 064904, 2024 Jun.
Article
em En
| MEDLINE
| ID: mdl-39020915
ABSTRACT
We study the jamming transition in a model of elastic particles under shear at zero temperature, with a focus on the relaxation time τ_{1}. This relaxation time is from two-step simulations where the first step is the ordinary shearing simulation and the second step is the relaxation of the energy after stopping the shearing. τ_{1} is determined from the final exponential decay of the energy. Such relaxations are done with many different starting configurations generated by a long shearing simulation in which the shear variable γ slowly increases. We study the correlations of both τ_{1}, determined from the decay, and the pressure, p_{1}, from the starting configurations as a function of the difference in γ. We find that the correlations of p_{1} are longer lived than the ones of τ_{1} and find that the reason for this is that the individual τ_{1} is controlled both by p_{1} of the starting configuration and a random contribution which depends on the relaxation path length-the average distance moved by the particles during the relaxation. We further conclude that it is γ_{τ}, determined from the correlations of τ_{1}, which is the relevant one when the aim is to generate data that may be used for determining the critical exponent that characterizes the jamming transition.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article