Your browser doesn't support javascript.
loading
CaAOS as a hub gene based on physiological and transcriptomic analyses of cold-resistant and cold-sensitive pepper cultivars.
Zhang, Yingxue; Zhang, Zongpeng; Ai, Yixin; Zhang, Haizhou; Chen, Yan; Ye, Ruiquan; Sun, Liang; Shen, Huolin; Cheng, Qing.
Afiliação
  • Zhang Y; Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China.
  • Zhang Z; Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China.
  • Ai Y; Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China.
  • Zhang H; Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China.
  • Chen Y; Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China.
  • Ye R; Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China.
  • Sun L; Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China.
  • Shen H; Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China.
  • Cheng Q; Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China. Electronic address: chengqing2020@cau.edu
Int J Biol Macromol ; 276(Pt 2): 133961, 2024 Sep.
Article em En | MEDLINE | ID: mdl-39029820
ABSTRACT
The yield and quality of pepper are considerably influenced by the cold conditions. Herein, we performed morphological, physiological and transcriptomic analyses by using two pepper seedlings, '2379' (cold-resistant) and '2380' (cold-sensitive). Briefly, 60 samples from each cultivar were analyzed at four distinct time points (0, 6, 24 and 48 h) at 5 °C in darkness. The physiological indices and activities of enzymes exhibited marked differences between the two cultivars. Transcriptomic analysis indicated that, compared to the control group, 11,415 DEGs were identified in '2379' and '2380' at 24 h. In the early stage, the number of DEGs in '2379' was 5.68 times higher than that in '2380', potentially explaining the observed differences in tolerance to colds. Processes such as protein targeting to membranes, jasmonic acid (JA)-mediated signalling, cold response and abscisic acid-activated signalling were involved. Subsequently, we identified a hub gene, CaAOS, that is involved in JA biosynthesis, positively influences cold tolerance and is a target of CaMYC2. Variations in the GC-motif of the CaAOS's promoter may influence the expression levels of CaAOS under cold treatment. The result of this study may lead to the development of more effective strategies for enhancing cold tolerance, potentially benefitting pepper breeding in cold regions.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Capsicum / Temperatura Baixa / Regulação da Expressão Gênica de Plantas / Perfilação da Expressão Gênica Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Capsicum / Temperatura Baixa / Regulação da Expressão Gênica de Plantas / Perfilação da Expressão Gênica Idioma: En Ano de publicação: 2024 Tipo de documento: Article