Breast cancer learning health system: Patient information from a data and analytics platform characterizes care provided.
Learn Health Syst
; 8(3): e10409, 2024 Jul.
Article
em En
| MEDLINE
| ID: mdl-39036532
ABSTRACT
Purpose:
In a learning health system (LHS), data gathered from clinical practice informs care and scientific investigation. To demonstrate how a novel data and analytics platform can enable an LHS at a regional cancer center by characterizing the care provided to breast cancer patients.Methods:
Socioeconomic information, tumor characteristics, treatments and outcomes were extracted from the platform and combined to characterize the patient population and their clinical course. Oncologists were asked to identify examples where clinical practice guidelines (CPGs) or policy changes had varying impacts on practice. These constructs were evaluated by extracting the corresponding data.Results:
Breast cancer patients (5768) seen at the Juravinski Cancer Centre between January 2014 and June 2022 were included. The average age was 62.5 years. The commonest histology was invasive ductal carcinoma (74.6%); 77% were estrogen receptor-positive and 15.5% were HER2 Neu positive. Breast-conserving surgery (BCS) occurred in 56%. For the 4294 patients who received systemic therapy, the initial indications were adjuvant (3096), neoadjuvant (828) and palliative (370). Metastases occurred in 531 patients and 495 patients died. Lowest-income patients had a higher mortality rate. For the adoption of CPGs, the uptake for adjuvant bisphosphonate was very low, 8% as predicted, compared to 64% for pertuzumab, a HER2 targeted agent and 40.2% for CD4/6 inhibitors in metastases. During COVID-19, the provincial cancer agency issued a policy to shorten the duration of radiation after BCS. There was a significant reduction in the average number of fractions to the breast by five fractions.Conclusion:
Our platform characterized care and the clinical course of breast cancer patients. Practice changes in response to regulatory developments and policy changes were measured. Establishing a data platform is important for an LHS. The next step is for the data to feedback and change practice, that is, close the loop.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article