Your browser doesn't support javascript.
loading
Two-response surface design optimization of carboxylated CNCs with super high thermal stability and dye removal capability.
Jia, Bowen; Chen, Xiang; Shen, Yunfei; Li, Zilu; Ma, Xue; Yu, Hou-Yong.
Afiliação
  • Jia B; Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China.
  • Chen X; Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China.
  • Shen Y; Huzhou City Linghu Xinwang Chemical Co., Ltd, Huzhou 313018, China.
  • Li Z; Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China.
  • Ma X; Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China.
  • Yu HY; Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 20
Carbohydr Polym ; 342: 122395, 2024 Oct 15.
Article em En | MEDLINE | ID: mdl-39048232
ABSTRACT
Discharging wastewater from industrial dyeing and printing processes poses a significant environmental threat, necessitating green and efficient adsorbents. Cellulose nanocrystals (CNCs) have emerged as a promising option for dye adsorbing. However, the industrial production and commercialization of CNCs still faced low yield, time-consuming, and uneco-friendly. In this study, we proposed a facile hydrochloric/maleic acid (HCl/C4H4O4) hydrolysis method to synthesize carboxylated CNCs using Box-Behnken design and dual response surface design, which can systematically investigate the effect of experimental factors (temperature, time and HCl/C4H4O volume ratio) on the final products. The rod-liked carboxylated CNCs gave the highest yield of 90.50 %, maximum carboxyl content of 1.29 mmol/g, and efficient dye removal ratio of 91.5 %. Furthermore, compared to CNCs obtained by commonly sulfuric acid hydrolysis way (CNCs-S) with a Tmax of 242.6 °C, the CNCs extracted at 5 h exhibited significantly improved thermal stability with Tmax reaching 351.2 °C. The enriched carboxyl content and excellent thermal stability show potential wastewater treatment applications under harsh conditions.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article