Your browser doesn't support javascript.
loading
Unraveling the Isotropic Hyperfine Coupling Constants of Nitroxide Radicals via Molecular Electrostatic Potential Analysis.
Thamleena, Hanna; Mathew, Jomon; Sajith, Pookkottu K.
Afiliação
  • Thamleena H; Department of Chemistry, St. Joseph's College (Autonomous), (Affiliated to the University of Calicut), Devagiri, Kerala 673008, India.
  • Mathew J; Department of Chemistry, St. Joseph's College (Autonomous), (Affiliated to the University of Calicut), Devagiri, Kerala 673008, India.
  • Sajith PK; Department of Chemistry, Farook College (Autonomous), Kozhikode 673632, India.
J Phys Chem A ; 128(31): 6373-6381, 2024 Aug 08.
Article em En | MEDLINE | ID: mdl-39052117
ABSTRACT
Nitroxide radicals have wide and promising applications as organic magnetic materials. Modulating the isotropic hyperfine coupling constants (HFCCs) of these radicals through proper structural design is an effective strategy for their application as spin probes and spin labels. In the present work, density functional theory calculations were carried out to develop a robust descriptor based on the molecular electrostatic potential for nitrogen HFCCs of nitroxide radicals. Forty nitroxide radicals from five distinct classes, namely, derivatives of cyclic, acyclic, imino, nitronyl, and benzimidazole nitronyl nitroxides, were selected, and the molecular electrostatic potential (MESP) at the nitrogen atom (VN) of the NO moiety was calculated. The VN values efficiently capture the electronic changes associated with the steric and electronic nature of these systems. A significant correlation between VN values and the experimental HFCCs of nitrogen nuclei demonstrates the applicability of VN as a simple and efficient descriptor for monitoring HFCCs. Furthermore, a good correlation between VN and experimental nitrogen HFCCs for each class of nitroxide radicals indicates the use of VN in the evaluation of the magnetic nature of the nitroxide radicals. The findings in this work are expected to facilitate the design of novel nitroxide radicals with desirable magnetic properties based on MESP topology analysis.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article