Your browser doesn't support javascript.
loading
Exploring the Antiangiogenic and Anti-Inflammatory Potential of Homoisoflavonoids: Target Identification Using Biotin Probes.
Fei, Xiang; Kwon, Sangil; Jang, Jinyoung; Seo, Minyoung; Yu, Seongwon; Corson, Timothy W; Seo, Seung-Yong.
Afiliação
  • Fei X; College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea.
  • Kwon S; College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea.
  • Jang J; College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea.
  • Seo M; College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea.
  • Yu S; College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea.
  • Corson TW; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.
  • Seo SY; College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea.
Biomolecules ; 14(7)2024 Jun 30.
Article em En | MEDLINE | ID: mdl-39062499
ABSTRACT
Chemical proteomics using biotin probes of natural products have significantly advanced our understanding of molecular targets and therapeutic potential. This review highlights recent progress in the application of biotin probes of homoisoflavonoids for identifying binding proteins and elucidating mechanisms of action. Notably, homoisoflavonoids exhibit antiangiogenic, anti-inflammatory, and antidiabetic effects. A combination of biotin probes, pull-down assays, mass spectrometry, and molecular modeling has revealed how natural products and their derivatives interact with several proteins such as ferrochelatase (FECH), soluble epoxide hydrolase (sEH), inosine monophosphate dehydrogenase 2 (IMPDH2), phosphodiesterase 4 (PDE4), and deoxyhypusine hydroxylase (DOHH). These target identification approaches pave the way for new therapeutic avenues, especially in the fields of oncology and ophthalmology. Future research aimed at expanding the repertoire of target identification using biotin probes of homoisoflavonoids promises to further elucidate the complex mechanisms and develop new drug candidates.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Biotina / Inibidores da Angiogênese / Anti-Inflamatórios Limite: Animals / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Biotina / Inibidores da Angiogênese / Anti-Inflamatórios Limite: Animals / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article