Your browser doesn't support javascript.
loading
Chlorine-Modified Soluble Melem-Based Graphitic Carbon Nitrite: Facile Synthesis, Catalytic Property and Ultrafast 2D IR Spectroscopic Characterization.
Zhao, Yueting; Yu, Pengyun; Wang, Jianping.
Afiliação
  • Zhao Y; Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
  • Yu P; University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
  • Wang J; Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
Chemphyschem ; : e202400356, 2024 Jul 30.
Article em En | MEDLINE | ID: mdl-39080833
ABSTRACT
On the basis of thermal etching bulk graphitic carbon nitride (g-C3N4), a mild hydrochloric acid treatment method was used in this work to produce g-C3N4 nano-sheets (CNNS) and further carbon nitride with chloride-modification (CNCl). The latter has thinner layer and smaller particle size and exhibit greatly improved dispersibility and solubility in water, DMSO and other polar solvents. A typical photocatalytic reaction in solution driven by CNCl shows a significantly improved photocatalytic performance over bulk g-C3N4 and CNNS. Steady-state analytical tools including SEM, mass, UV-Vis, and IR spectroscopies, and time-resolved two-dimensional infrared (2D IR) vibrational spectroscopy, were used together in this work. Better solubility, more flexible structure, smaller size, easier generation of free radicals and lower recombination rate of electron-hole pair, are believed to be reasons for the superior photocatalytic performance of CNCl.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article