Your browser doesn't support javascript.
loading
Hydrodynamic disintegration effects assessment by CFD modelling integrated with bench tests.
Dzido, Aleksandra; Walczak, Justyna; Jankowska, Honorata; Krawczyk, Piotr; Özbayram, E Gözde; Zubrowska-Sudol, Monika.
Afiliação
  • Dzido A; Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, Nowowiejska 21/25, 00-665, Warsaw, Poland. Electronic address: aleksandra.dzido@pw.edu.pl.
  • Walczak J; Warsaw University of Technology, Faculty of Building Services, Hydro and Environmental Engineering, Nowowiejska 20, 00-653, Warsaw, Poland.
  • Jankowska H; Warsaw University of Technology, Faculty of Building Services, Hydro and Environmental Engineering, Nowowiejska 20, 00-653, Warsaw, Poland.
  • Krawczyk P; Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, Nowowiejska 21/25, 00-665, Warsaw, Poland.
  • Özbayram EG; Department of Marine and Freshwater Resources Management, Faculty of Aquatic Sciences, Istanbul University, Fatih, 34134, Istanbul, Turkey.
  • Zubrowska-Sudol M; Warsaw University of Technology, Faculty of Building Services, Hydro and Environmental Engineering, Nowowiejska 20, 00-653, Warsaw, Poland.
J Environ Manage ; 367: 121948, 2024 Jul 30.
Article em En | MEDLINE | ID: mdl-39083945
ABSTRACT
The hydrodynamic disintegration process depends, among others, on operational parameters like rotational speed or introduced energy. The study presents an interdisciplinary approach to the hydrodynamic disintegration parameters impact assessment on the internal processes and disintegration effects on the example of sewage sludge treatment. Three rotational speeds were considered, including fluid properties change at selected disintegration stages. Disintegration effects were measured in the bench tests. Soluble chemical oxygen demand (SCOD) and volatile fatty acids (VFA) were measured before and after disintegration process. The assessment of the effects of disintegration employed the disintegration degree and the assessment of the course of methane production employed biochemical methane potential (BMP) tests. Fluid properties change during the disintegration stages does not cause a significant change in the flow structure. Due to the mathematical modelling results, at 1500 rpm no cavitation phenomenon was observed. Although, the bench tests results indicates, for the rotational speed 1500 rpm, organic compounds released to the liquid were characterised by higher susceptibility to biological decomposition than those released for 2500 and 3000 rpm (as suggested by the low SCOD/VFA values for 1500 rpm). Obtained results have confirmed, that the main phenomenon responsible for the disintegration effect is mechanical shredding not cavitation.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article