Your browser doesn't support javascript.
loading
XGBoost algorithm assisted multi-component quantitative analysis with Raman spectroscopy.
Wang, Qiaoyun; Zou, Xin; Chen, Yinji; Zhu, Ziheng; Yan, Chongyue; Shan, Peng; Wang, Shuyu; Fu, Yongqing.
Afiliação
  • Wang Q; College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning Province 110819, China; Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, China. Electronic address: wangqiaoyun@neuq.edu.cn.
  • Zou X; College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning Province 110819, China.
  • Chen Y; College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning Province 110819, China.
  • Zhu Z; College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning Province 110819, China.
  • Yan C; College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning Province 110819, China.
  • Shan P; College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning Province 110819, China.
  • Wang S; College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning Province 110819, China.
  • Fu Y; Faculty of Engineering & Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124917, 2024 Dec 15.
Article em En | MEDLINE | ID: mdl-39094267
ABSTRACT
To improve prediction performance and reduce artifacts in Raman spectra, we developed an eXtreme Gradient Boosting (XGBoost) preprocessing method to preprocess the Raman spectra of glucose, glycerol and ethanol mixtures. To ensure the robustness and reliability of the XGBoost preprocessing method, an X-LR model (which combined XGBoost preprocessing and a linear regression (LR) model) and a X-MLP model (which combined XGBoost preprocessing and a multilayer perceptron (MLP) model) were developed. These two models were used to quantitatively analyze the concentrations of glucose, glycerol and ethanol in the Raman spectra of mixed solutions. The proportion map of hyperparameters was firstly used to narrow down the search range of hyperparameters in the X-LR and the X-MLP models. Then the correlation coefficients (R2), root mean square of calibration (RMSEC), and root mean square error of prediction (RMSEP) were used to evaluate the models' performance. Experimental results indicated that the XGBoost preprocessing method achieved higher accuracy and generalization capability, with better performance than those of other preprocessing methods for both LR and MLP models.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article