Your browser doesn't support javascript.
loading
The effect of an acute bout of exercise on circulating vitamin D metabolite concentrations: a randomised crossover study in healthy adults.
Davies, Sophie E; Perkin, Oliver J; Betts, James A; Gonzalez, Javier T; Hewison, Martin; Jenkinson, Carl; Jones, Kerry S; Meadows, Sarah R; Parkington, Damon A; Koulman, Albert; Thompson, Dylan.
Afiliação
  • Davies SE; Department for Health, University of Bath, Claverton Down, Bath, UK.
  • Perkin OJ; Centre for Nutrition, Exercise & Metabolism, University of Bath, Claverton Down, Bath, UK.
  • Betts JA; Department for Health, University of Bath, Claverton Down, Bath, UK.
  • Gonzalez JT; Centre for Nutrition, Exercise & Metabolism, University of Bath, Claverton Down, Bath, UK.
  • Hewison M; Department for Health, University of Bath, Claverton Down, Bath, UK.
  • Jenkinson C; Centre for Nutrition, Exercise & Metabolism, University of Bath, Claverton Down, Bath, UK.
  • Jones KS; Department for Health, University of Bath, Claverton Down, Bath, UK.
  • Meadows SR; Centre for Nutrition, Exercise & Metabolism, University of Bath, Claverton Down, Bath, UK.
  • Parkington DA; Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK.
  • Koulman A; Unversity of Sydney, Sydney, New South Wales, Australia.
  • Thompson D; MRC London Institute of Medical Sciences, London, UK.
J Physiol ; 2024 Aug 04.
Article em En | MEDLINE | ID: mdl-39097829
ABSTRACT
The effect of acute exercise on circulating concentrations of vitamin D metabolites is unclear. To address this knowledge gap, we examined the effect of a bout of treadmill-based exercise versus rest on circulating concentrations of 25(OH)D3, 25(OH)D2, 3-epi-25(OH)D3, 24,25(OH)2D3, 1,25(OH)2D3, and vitamin D2 and D3 in healthy men and women. Thirty-three healthy adults (14 females, 41 (15) years, body mass index 26.2 (3.7) kg/m2, V ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{max}}}}$ 36.2 (9.2) ml/kg/min; mean (SD)) completed two laboratory visits involving 60 min of moderate-intensity treadmill exercise (60% V ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{max}}}}$ ) versus 60 min of seated rest, both in an overnight fasted-state, as part of a randomised crossover design. Venous blood samples were drawn at baseline, immediately (0 h), 1 h and 24 h after the exercise or rest-period. There was a significant time × trial interaction effect for total circulating 25(OH)D (P = 0.0148), 25(OH)D3 (P = 0.0127) and 1,25(OH)2D3 (P = 0.0226). Immediately post-exercise, 25(OH)D, 25(OH)D3 and 1,25(OH)2D3 concentrations were significantly elevated compared to the control resting condition, and 1,25(OH) 2D3 remained significantly elevated 1 h later. Circulating albumin, vitamin D binding protein, calcium and parathyroid hormone were elevated immediately post-exercise. Thus, an acute bout of moderate intensity exercise transiently increases concentrations of circulating 25(OH)D and 1,25(OH)2D3 compared to resting conditions. KEY POINTS Observational studies suggest that acute exercise might change circulating concentrations of vitamin D metabolites, but this has not been investigated using randomised crossover studies and using robust analytical procedures. In this study, we used a randomised crossover design to examine the effect of a bout of treadmill-based exercise (vs. rest) on circulating concentrations of a wide range of vitamin D metabolites in healthy humans. We show that an acute bout of moderate intensity exercise transiently increases concentrations of circulating 25(OH)D and 1,25(OH)2D3 compared to resting conditions. These findings indicate that regular exercise could lead to transient but regular windows of enhanced vitamin D biological action.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article