Your browser doesn't support javascript.
loading
Transcriptomic and metabolomic analyses reveal sex-related differences in the gonads of Pinctada fucata martensii.
Fang, Jiaying; Yang, Chuangye; Liao, Yongshan; Wang, Qingheng; Deng, Yuewen.
Afiliação
  • Fang J; Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
  • Yang C; Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Provincial Key L
  • Liao Y; Pearl Research Institute, Guangdong Ocean University, Zhanjiang, China.
  • Wang Q; Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
  • Deng Y; Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Provincial Key L
Article em En | MEDLINE | ID: mdl-39116717
ABSTRACT
Pinctada fucata martensii is an economically important bivalve mollusk, as this species makes a major contribution to seawater pearl production. Pearl production efficiency varies between the sexes of P. f. martensii, but many aspects of the molecular mechanisms underlying sex determination and sex differentiation in P. f. martensii remain unclear. Here, transcriptomic and metabonomic analyses were conducted to identify the major genes and metabolic changes associated with sex determination and gametogenesis. We identified a total of 3426 differentially expressed genes (DEGs) between females and males. These included Fem-1c and Foxl2, which are involved in sex determination and sex differentiation, and SOHLH2, Nanos1 and TSSK4, which are involved in gametogenesis. We also identified a total of 5231 significant differential metabolites (SDMs) between females and males. These DEGs were enriched in 47 metabolic pathways, including "ABC transporters," "purine metabolism," and "glycerophospholipid metabolism." Our findings provide new insights into the molecular mechanisms underlying sex determination, sex differentiation, and gametogenesis and will aid future studies of P. f. martensii.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article