Your browser doesn't support javascript.
loading
New Glycotoxin Inhibitor from Sesuvium sesuvioides Mitigates Symptoms of Insulin Resistance and Diabetes by Suppressing AGE-RAGE Axis in Skeletal Muscle.
Ghaffar, Safina; Waraich, Rizwana Sanaullah; Orfali, Raha; Al-Taweel, Areej; Aati, Hanan Y; Kamran, Sonia; Perveen, Shagufta.
Afiliação
  • Ghaffar S; Biomedical Research Center, Department of Biomedical & Biological Sciences, Sohail University, Karachi 78400, Pakistan.
  • Waraich RS; Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia.
  • Orfali R; Biomedical Research Center, Department of Biomedical & Biological Sciences, Sohail University, Karachi 78400, Pakistan.
  • Al-Taweel A; Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia.
  • Aati HY; Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia.
  • Kamran S; Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia.
  • Perveen S; Department of Chemistry, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA.
Molecules ; 29(15)2024 Aug 01.
Article em En | MEDLINE | ID: mdl-39125053
ABSTRACT
The current study intended to investigate the role of new natural compounds derived from the Sesuvium sesuvioides plant in mitigating symptoms of diabetes and insulin resistance in the diabetic mice model. Anti-advanced glycation activity, insulin, and adiponectin were quantified by enzyme-linked immunosorbent assay (ELISA). Glucose uptake was performed using enzymatic fluorescence assay, and glycogen synthesis was measured using PAS staining. Gene and protein expression was assessed using real time PCR (RT-PCR), and immunoblotting and fluorescent microscopy, respectively. The new flavonoid glycoside eupalitin 3-O-α-L-rhamnopyranosyl-(1→2)-ß-D-glucopyranoside 1 isolated from S. sesuvioides exhibited anti-AGE activity by reducing human glycated albumin in liver cells. In a diabetic mouse model treated with compound 1, we observed improved glucose tolerance, increased adiponectin levels, and decreased insulin resistance. We also observed alleviated AGEs induced reduction in glucose uptake and restored glycogen synthesis in the compound 1-treated diabetic mice muscles. Exploring the molecular mechanism of action in skeletal muscle tissue of diabetic mice, we found that 1 reduced AGE-induced reactive oxygen species and the inflammatory gene in the muscle of diabetic mice. Additionally, 1 exhibited these effects by reducing the gene and protein expression of receptor for advanced glycation end products (RAGE) and inhibiting protein kinase C (PKC) delta activation. This further led us to demonstrate that compound 1 reduced serine phosphorylation of IRS-1, thereby restoring insulin sensitivity. We conclude that a new flavonoid glycoside from S. sesuvioides could be a therapeutic target for the treatment of symptoms of insulin resistance and diabetes.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Resistência à Insulina / Produtos Finais de Glicação Avançada / Músculo Esquelético / Diabetes Mellitus Experimental / Receptor para Produtos Finais de Glicação Avançada Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Resistência à Insulina / Produtos Finais de Glicação Avançada / Músculo Esquelético / Diabetes Mellitus Experimental / Receptor para Produtos Finais de Glicação Avançada Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2024 Tipo de documento: Article