The Impact of PAD4-dependent Neutrophil Extracellular Trap Formation on the Early Development of Intestinal Fibrosis in Crohn's Disease.
J Crohns Colitis
; 2024 Aug 10.
Article
em En
| MEDLINE
| ID: mdl-39126198
ABSTRACT
BACKGROUND AND AIMS:
During early phases of inflammation, activated neutrophils extrude neutrophil extracellular traps (NETs) in a PAD4-dependent manner, aggravating tissue injury and remodelling. In this study, we investigated the potential pro-fibrotic properties and signalling of NETs in Crohn's disease (CD).METHODS:
NETs and activated fibroblasts were labelled on resected ileum from CD patients by multiplex immunofluorescence staining. NETs-treated human primary intestinal fibroblasts were analysed by bulk RNA-sequencing to uncover cell signalling pathways, and by high-throughput imaging to assess collagen production and migratory activity. Consequentially, TLR2/NF-kB pathway was evaluated by transfection of CCD-18Co fibroblasts with NF-kB-luciferase reporter plasmid, incorporating C29 to block TLR2 signalling. A chronic DSS mouse model was used to define the specific role of PAD4 deletion in neutrophils (MRP8-Cre, Pad4fl/fl).RESULTS:
Immunofluorescence showed spatial co-localisation of NETs and activated fibroblasts in ileal ulcerations of CD patients. Transcriptomic analysis revealed upregulation of pro-fibrotic genes and activation of TLR-signalling pathways in NETs-treated fibroblasts. NETs treatment induced fibroblast proliferation, diminished migratory capability, and increased collagen release. Transfection experiments indicated a substantial increase in NF-kB expression with NETs, whereas C29 led to decreased expression and release of collagen. In line, a significantly reduction in collagen content was observed in the colon of MRP8-Cre, Pad4fl/fl mice subjected to chronic DSS colitis.CONCLUSIONS:
NETs potentially serve as an initial stimulus for pathological activation of fibroblasts within the intestine via the TLR2/NF-kB pathway. Given their early involvement in inflammation, inhibition of PAD4 might offer a strategy to modulate both inflammation and fibrogenesis in CD.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article