Your browser doesn't support javascript.
loading
Enhancement of motor neuron development and function in zebrafish by sialyllacto-N-tetraose b.
Li, Pengcheng; Chen, Peng; Zheng, Yuqin; Suo, Guihai; Shen, Feifei; Li, Haiying; Zhong, Xiuli; Chen, Xinwei; Wu, Youjia.
Afiliação
  • Li P; Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China.
  • Chen P; Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China.
  • Zheng Y; Department of Pediatrics, Rugao People's Hospital, Rugao, China.
  • Suo G; Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China.
  • Shen F; Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China.
  • Li H; Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China.
  • Zhong X; Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China.
  • Chen X; Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China.
  • Wu Y; Department of Pediatrics, Affiliated Haimen Hospital of Xinglin College, Nantong University, Nantong, China.
Transl Pediatr ; 13(7): 1201-1209, 2024 Jul 31.
Article em En | MEDLINE | ID: mdl-39144427
ABSTRACT

Background:

Sialyllacto-N-tetraose b (LSTb) is a component of human milk oligosaccharides. Due to its low concentration, the impact of LSTb on neurodevelopment remains largely unexplored. It is worth studying whether LSTb should be added to infant formula to simulate breast milk. This study aimed to investigate the effect of LSTb on the development of motor neurons of the central nervous system using a transgenic zebrafish model.

Methods:

Transgenic (Tg) zebrafish line (Hb9GFP) was incubated with LSTb, and the axonal growth of caudal primary (CaP) neurons was assessed. Locomotor behavior was evaluated, and RNA sequencing (RNA-seq) was performed to identify the differentially expressed genes (DEGs). The expression of Slit2 and Slit3, genes involved in axon guidance, was further analyzed through real-time polymerase chain reaction (real-time PCR) and whole-mount in situ hybridization.

Results:

There was a significant increase in the number and length of CaP axon branches, suggesting that LSTb promotes CaP development. Behavioral analysis revealed enhanced locomotor activity in LSTb-treated larvae, indicating improved motor function. RNA-seq analysis identified 5,847 DEGs related to central nervous system neuron differentiation, including Slit2 and Slit3, which are known to contribute to axon guidance. In situ hybridization confirmed increased Slit2 expression in the central nervous system of LSTb-treated larvae.

Conclusions:

LSTb significantly influences motor neuron development, potentially through the upregulation of Slit2 and Slit3. This research provides valuable insights into the role of LSTb in neurodevelopment.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article