Your browser doesn't support javascript.
loading
Predicting T cell receptor functionality against mutant epitopes.
Drost, Felix; Dorigatti, Emilio; Straub, Adrian; Hilgendorf, Philipp; Wagner, Karolin I; Heyer, Kersten; López Montes, Marta; Bischl, Bernd; Busch, Dirk H; Schober, Kilian; Schubert, Benjamin.
Afiliação
  • Drost F; Institute of Computational Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany; School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany.
  • Dorigatti E; Institute of Computational Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany; Department of Statistics, Ludwig Maximilian Universität, 80539 Munich, Germany; Munich Center for Machine Learning (MCML), Ludwig Maximilian Universität, 80538 Munich, Germany.
  • Straub A; Institute for Medical Microbiology, Immunology, and Hygiene, Technical University of Munich, 81675 Munich, Germany.
  • Hilgendorf P; Institute for Medical Microbiology, Immunology, and Hygiene, Technical University of Munich, 81675 Munich, Germany; Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie, und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
  • Wagner KI; Institute for Medical Microbiology, Immunology, and Hygiene, Technical University of Munich, 81675 Munich, Germany.
  • Heyer K; Institute for Medical Microbiology, Immunology, and Hygiene, Technical University of Munich, 81675 Munich, Germany.
  • López Montes M; Institute for Medical Microbiology, Immunology, and Hygiene, Technical University of Munich, 81675 Munich, Germany.
  • Bischl B; Department of Statistics, Ludwig Maximilian Universität, 80539 Munich, Germany; Munich Center for Machine Learning (MCML), Ludwig Maximilian Universität, 80538 Munich, Germany.
  • Busch DH; Institute for Medical Microbiology, Immunology, and Hygiene, Technical University of Munich, 81675 Munich, Germany; German Center for Infection Research, Deutschen Zentrum für Infektionsforschung (DZIF), Partner Site Munich, 81675 Munich, Germany.
  • Schober K; Institute for Medical Microbiology, Immunology, and Hygiene, Technical University of Munich, 81675 Munich, Germany; Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie, und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
  • Schubert B; Institute of Computational Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany; School of Computation, Information, and Technology, Technical University of Munich, 85748 Garching bei München, Germany. Electronic address: benjamin.schubert@helmholtz-munich.de.
Cell Genom ; 4(9): 100634, 2024 Sep 11.
Article em En | MEDLINE | ID: mdl-39151427
ABSTRACT
Cancer cells and pathogens can evade T cell receptors (TCRs) via mutations in immunogenic epitopes. TCR cross-reactivity (i.e., recognition of multiple epitopes with sequence similarities) can counteract such escape but may cause severe side effects in cell-based immunotherapies through targeting self-antigens. To predict the effect of epitope point mutations on T cell functionality, we here present the random forest-based model Predicting T Cell Epitope-Specific Activation against Mutant Versions (P-TEAM). P-TEAM was trained and tested on three datasets with TCR responses to single-amino-acid mutations of the model epitope SIINFEKL, the tumor neo-epitope VPSVWRSSL, and the human cytomegalovirus antigen NLVPMVATV, totaling 9,690 unique TCR-epitope interactions. P-TEAM was able to accurately classify T cell reactivities and quantitatively predict T cell functionalities for unobserved single-point mutations and unseen TCRs. Overall, P-TEAM provides an effective computational tool to study T cell responses against mutated epitopes.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Receptores de Antígenos de Linfócitos T / Epitopos de Linfócito T Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Receptores de Antígenos de Linfócitos T / Epitopos de Linfócito T Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article