Your browser doesn't support javascript.
loading
Treatment with oncolytic vaccinia virus infects tumor-infiltrating regulatory and exhausted T cells.
DePeaux, Kristin; Gunn, William G; Rivadeneira, Dayana B; Delgoffe, Greg M.
Afiliação
  • DePeaux K; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.
  • Gunn WG; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
  • Rivadeneira DB; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.
  • Delgoffe GM; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
J Immunother Cancer ; 12(8)2024 Aug 17.
Article em En | MEDLINE | ID: mdl-39153823
ABSTRACT

BACKGROUND:

Oncolytic viruses (OVs) are an attractive way to increase immune infiltration into an otherwise cold tumor. While OVs are engineered to selectively infect tumor cells, there is evidence that they can infect other non-malignant cells in the tumor. We sought to determine if oncolytic vaccinia virus (VV) can infect lymphocytes in the tumor and, if so, how this was linked to therapeutic efficacy.

METHODS:

To investigate infection of lymphocytes by VV, we used a GFP reporting VV in a murine head and neck squamous cell carcinoma tumor model. We also performed in vitro infection studies to determine the mechanism and consequences of VV lymphocyte infection by VV.

RESULTS:

Our findings show that VV carries the capacity to infect proportions of immune cells, most notably T cells, after intratumoral treatment. Notably, this infection is preferential to terminally differentiated T cells that tend to reside in hypoxia. Infection of T cells leads to both virus production by the T cells as well as the eventual death of these cells. Using a mouse model which overexpressed the antiapoptotic protein Bcl2 in all T cells, we found that reducing T cell death following VV infection in MEER tumors reduced the number of complete regressions and reduced survival time compared with littermate control mice.

CONCLUSIONS:

These findings suggest that OVs are capable of infecting more than just malignant cells after treatment, and that this infection may be an important part of the OV mechanism. We found that exhausted CD8+ T cells and regulatory CD4+ T cells were preferentially infected at early timepoints after treatment and subsequently died. When cell death in T cells was mitigated, mice responded poorly to VV treatment, suggesting that the deletion of these populations is critical to the therapeutic response to VV.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Vaccinia virus / Vírus Oncolíticos / Terapia Viral Oncolítica Limite: Animals / Female / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Vaccinia virus / Vírus Oncolíticos / Terapia Viral Oncolítica Limite: Animals / Female / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article