Your browser doesn't support javascript.
loading
A Comprehensive Natural Language Processing Pipeline for the Chronic Lupus Disease.
Lilli, Livia; Bosello, Silvia Laura; Antenucci, Laura; Patarnello, Stefano; Ortolan, Augusta; Lenkowicz, Jacopo; Gorini, Marco; Castellino, Gabriella; Cesario, Alfredo; D'Agostino, Maria Antonietta; Masciocchi, Carlotta.
Afiliação
  • Lilli L; Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
  • Bosello SL; Catholic University of the Sacred Heart, Rome, Italy.
  • Antenucci L; Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
  • Patarnello S; Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
  • Ortolan A; Catholic University of the Sacred Heart, Rome, Italy.
  • Lenkowicz J; Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
  • Gorini M; Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
  • Castellino G; Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
  • Cesario A; AstraZeneca Italy, MIND, Milan, Italy.
  • D'Agostino MA; AstraZeneca Italy, MIND, Milan, Italy.
  • Masciocchi C; Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
Stud Health Technol Inform ; 316: 909-913, 2024 Aug 22.
Article em En | MEDLINE | ID: mdl-39176940
ABSTRACT
Electronic Health Records (EHRs) contain a wealth of unstructured patient data, making it challenging for physicians to do informed decisions. In this paper, we introduce a Natural Language Processing (NLP) approach for the extraction of therapies, diagnosis, and symptoms from ambulatory EHRs of patients with chronic Lupus disease. We aim to demonstrate the effort of a comprehensive pipeline where a rule-based system is combined with text segmentation, transformer-based topic analysis and clinical ontology, in order to enhance text preprocessing and automate rules' identification. Our approach is applied on a sub-cohort of 56 patients, with a total of 750 EHRs written in Italian language, achieving an Accuracy and an F-score over 97% and 90% respectively, in the three extracted domains. This work has the potential to be integrated with EHR systems to automate information extraction, minimizing the human intervention, and providing personalized digital solutions in the chronic Lupus disease domain.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Processamento de Linguagem Natural / Registros Eletrônicos de Saúde / Lúpus Eritematoso Sistêmico Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Processamento de Linguagem Natural / Registros Eletrônicos de Saúde / Lúpus Eritematoso Sistêmico Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article