Your browser doesn't support javascript.
loading
An escape-enhancing circuit involving subthalamic CRH neurons mediates stress-induced anhedonia in mice.
Zhao, Binghao; Liang, Lisha; Li, Jingfei; Schaefke, Bernhard; Wang, Liping; Tseng, Yu-Ting.
Afiliação
  • Zhao B; CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain
  • Liang L; CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain
  • Li J; CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain
  • Schaefke B; CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain
  • Wang L; CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain
  • Tseng YT; CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain
Neurobiol Dis ; 200: 106649, 2024 Oct 01.
Article em En | MEDLINE | ID: mdl-39187210
ABSTRACT
Chronic predator stress (CPS) is an important and ecologically relevant tool for inducing anhedonia in animals, but the neural circuits underlying the associated neurobiological changes remain to be identified. Using cell-type-specific manipulations, we found that corticotropin-releasing hormone (CRH) neurons in the medial subthalamic nucleus (mSTN) enhance struggle behaviors in inescapable situations and lead to anhedonia, predominately through projections to the external globus pallidus (GPe). Recordings of in vivo neuronal activity revealed that CPS distorted mSTN-CRH neuronal responsivity to negative and positive stimuli, which may underlie CPS-induced behavioral despair and anhedonia. Furthermore, we discovered presynaptic inputs from the bed nucleus of the stria terminalis (BNST) to mSTN-CRH neurons projecting to the GPe that were enhanced following CPS, and these inputs may mediate such behaviors. This study identifies a neurocircuitry that co-regulates escape response and anhedonia in response to predator stress. This new understanding of the neural basis of defensive behavior in response to predator stress will likely benefit our understanding of neuropsychiatric diseases.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Estresse Psicológico / Hormônio Liberador da Corticotropina / Núcleo Subtalâmico / Anedonia / Neurônios Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Estresse Psicológico / Hormônio Liberador da Corticotropina / Núcleo Subtalâmico / Anedonia / Neurônios Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article