Your browser doesn't support javascript.
loading
Edible Ultralong Organic Phosphorescent Excipient for Afterglow Visualizing the Quality of Tablets.
Peng, Yayun; Yao, Xiaokang; Hu, Xiwen; Wu, Beishen; Pei, Xiangyu; Yang, Yuhan; Dong, Zaiqing; An, Zhongfu; Huang, Wei; Cai, Ting.
Afiliação
  • Peng Y; State Key Laboratory of Natural Medicines, Department of Pharmaceutics and Pharmaceutical Engineering, China Pharmaceutical University (Nanjing), No. 24 Tongjia Rd., Nanjing, 211198, China.
  • Yao X; Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing), No. 30 South Puzhu Rd., Nanjing, 211816, China.
  • Hu X; Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University (Xiamen), Xiang'an Campus, No. 4221 Xiang'an South Road, Xiamen, Fujian, 361102, China.
  • Wu B; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, Fujian, 361102, China.
  • Pei X; State Key Laboratory of Natural Medicines, Department of Pharmaceutics and Pharmaceutical Engineering, China Pharmaceutical University (Nanjing), No. 24 Tongjia Rd., Nanjing, 211198, China.
  • Yang Y; Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing), No. 30 South Puzhu Rd., Nanjing, 211816, China.
  • Dong Z; State Key Laboratory of Natural Medicines, Department of Pharmaceutics and Pharmaceutical Engineering, China Pharmaceutical University (Nanjing), No. 24 Tongjia Rd., Nanjing, 211198, China.
  • An Z; State Key Laboratory of Natural Medicines, Department of Pharmaceutics and Pharmaceutical Engineering, China Pharmaceutical University (Nanjing), No. 24 Tongjia Rd., Nanjing, 211198, China.
  • Huang W; State Key Laboratory of Natural Medicines, Department of Pharmaceutics and Pharmaceutical Engineering, China Pharmaceutical University (Nanjing), No. 24 Tongjia Rd., Nanjing, 211198, China.
  • Cai T; Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing), No. 30 South Puzhu Rd., Nanjing, 211816, China.
Adv Mater ; : e2406618, 2024 Aug 29.
Article em En | MEDLINE | ID: mdl-39205536
ABSTRACT
Stimuli-responsive ultralong organic phosphorescence (UOP) materials that in response to external factors such as light, heat, and atmosphere have raised a tremendous research interest in fields of optoelectronics, anticounterfeiting labeling, biosensing, and bioimaging. However, for practical applications in life and health fields, some fundamental requirements such as biocompatibility and biodegradability are still challenging for conventional inorganic and aromatic-based stimuli-responsive UOP systems. Herein, an edible excipient, sodium carboxymethyl cellulose (SCC), of which UOP properties exhibit intrinsically multistimuli responses to excited wavelength, pressure, and moisture, is reported. Impressively, as a UOP probe, SCC enables nondestructive detection of hardness with superb contrast (signal-to-background ratio up to 120), while exhibiting a response sensitivity to moisture that is more than 5.0 times higher than that observed in conventional fluorescence. Additionally, its applicability for hardness monitoring and high-moisture warning for tablets containing a moisture-sensitive drug, with the quality of the drug being determinable through the naked-eye visible UOP, is demonstrated. This work not only elucidates the reason for stimulative corresponding properties in SCC but also makes a major step forward in extending the potential applications of stimuli-responsive UOP materials in manufacturing high-quality and safe medicine.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article