Your browser doesn't support javascript.
loading
Coenzyme Q10 ameliorates cyclophosphamide-induced chemobrain by repressing neuronal apoptosis and preserving hippocampal neurogenesis: Mechanistic roles of Wnt/ ß-catenin signaling pathway.
Hussein, Zeina; Michel, Haidy E; El-Naga, Reem N; El-Demerdash, Ebtehal; Mantawy, Eman M.
Afiliação
  • Hussein Z; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
  • Michel HE; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt. Electronic address: heidieffat@pharma.asu.edu.eg.
  • El-Naga RN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
  • El-Demerdash E; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt; Preclinical and Translational Research Center, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
  • Mantawy EM; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt; Preclinical and Translational Research Center, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
Neurotoxicology ; 105: 21-33, 2024 Aug 30.
Article em En | MEDLINE | ID: mdl-39209270
ABSTRACT
Deterioration in the neurocognitive function of cancer patients referred to as "Chemobrain" is a devastating obstacle associated with cyclophosphamide (CYP). CYP is an alkylating agent, clinically utilized as an efficient anticancer and immunosuppressant. Coenzyme Q10 (CoQ10) is a worthwhile micronutrient with diverse biological activities embracing antioxidant, anti-apoptotic, and neuroprotective effects. The current experiment was designed for investigating the neuroprotective capability of CoQ10 versus CYP-elicited chemobrain in rats besides elucidating the causal molecular mechanisms. Male Sprague Dawley rats received CoQ10 (10 mg/kg, orally, once daily, for 10 days) and/or a single dose of CYP (200 mg/kg i.p. on day 7). CoQ10 counteracted CYP-induced cognitive and motor dysfunction as demonstrated by the findings of neurobehavioral tests (passive avoidance, Y maze, locomotion, and rotarod tests). Histopathological analysis further affirmed the neuroprotective abilities of CoQ10. CoQ10 effectually diminished CYP-provoked oxidative injury by restoring the antioxidant activity of catalase (CAT) enzyme while reducing malondialdehyde (MDA) levels. Besides, CoQ10 efficiently repressed CYP-induced neuronal apoptosis by downregulating the expression of Bax and caspase-3 while upregulating the Bcl-2 expression. Moreover, CoQ10 hampered CYP-provoked upregulation in acetylcholinesterase (AChE) activity. Furthermore, CoQ10 considerably augmented hippocampal neurogenesis by elevating the expressions of brain-derived neurotrophic factor (BDNF) and Ki-67. These promising neuroprotective effects can be credited to upregulating Wnt/ß-catenin pathway as evidenced by the elevated expressions of Wnt-3a, ß-catenin, and Phoshpo-glycogen synthase kinase-3 ß (p-GSK-3ß). Collectively, these findings proved the neuroprotective capabilities of CoQ10 against CYP-induced chemobrain through combating oxidative injury, repressing intrinsic apoptosis, boosting neurogenesis, and eventually upregulating the Wnt/ß-catenin pathway.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article