Your browser doesn't support javascript.
loading
Recognition and Sequencing of Mutagenic DNA Adduct at Single-Base Resolution Through Unnatural Base Pair.
Wang, Honglei; Tie, Wenchao; Zhu, Wuyuan; Wang, Shuyuan; Zhang, Ruzhen; Duan, Jianlin; Ye, Bingyu; Zhu, Anlian; Li, Lingjun.
Afiliação
  • Wang H; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China.
  • Tie W; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China.
  • Zhu W; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China.
  • Wang S; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China.
  • Zhang R; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China.
  • Duan J; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China.
  • Ye B; State Key Laboratory of Antiviral Drug and Pingyuan Lab, Henan Normal University, Xinxiang, Henan, 453007, China.
  • Zhu A; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China.
  • Li L; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China.
Adv Sci (Weinh) ; : e2404622, 2024 Sep 03.
Article em En | MEDLINE | ID: mdl-39225557
ABSTRACT
DNA lesions are linked to cancer, aging, and various diseases. The recognition and sequencing of special DNA lesions are of great interest but highly challenging. In this paper, an unnatural-base-pair-promoting method for sequencing highly mutagenic ethenodeoxycytidine (εC) DNA lesions that occurred frequently is developed. First, a promising unnatural base pair of dεC-dNaM to recognize εC lesions is identified, and then a conversion PCR is developed to site-precise transfer dεC-dNaM to dTPT3-dNaM for convenient Sanger sequencing. The low sequence dependence of this method and its capacity for the enrichment of dεC in the abundance of as low as 1.6 × 10-6 nucleotides is also validated. Importantly, the current method can be smoothly applied for recognition, amplification, enrichment, and sequencing of the real biological samples in which εC lesions are generated in vitro or in vivo, thus offering the first sequencing methodology of εC lesions at single-base resolution. Owing to its simple operations and no destruction of inherent structures of DNA, the unnatural-base-pair strategy may provide a new platform to produce general tools for the sequencing of DNA lesions that are hardly sequenced by traditional strategies.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article