Your browser doesn't support javascript.
loading
Towards characterization of cell culture conditions for reliable proteomic analysis: in vitro studies on A549, differentiated THP-1, and NR8383 cell lines.
Ledwith, Rico; Stobernack, Tobias; Bergert, Antje; Bahl, Aileen; Pink, Mario; Haase, Andrea; Dumit, Verónica I.
Afiliação
  • Ledwith R; Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
  • Stobernack T; Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.
  • Bergert A; Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
  • Bahl A; Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
  • Pink M; Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
  • Haase A; Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
  • Dumit VI; Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
Arch Toxicol ; 2024 Sep 12.
Article em En | MEDLINE | ID: mdl-39264451
ABSTRACT
Proteomic investigations result in high dimensional datasets, but integration or comparison of different studies is hampered by high variances due to different experimental setups. In addition, cell culture conditions can have a huge impact on the outcome. This study systematically investigates the impact of experimental parameters on the proteomic profiles of commonly used cell lines-A549, differentiated THP-1 macrophage-like cells, and NR8383-for toxicity studies. The work focuses on analyzing the influence at the proteome level of cell culture setup involving different vessels, cell passage numbers, and post-differentiation harvesting time, aiming to improve the reliability of proteomic analyses for hazard assessment. Mass-spectrometry-based proteomics was utilized for accurate protein quantification by means of a label-free approach. Our results showed that significant proteome variations occur when cells are cultivated under different setups. Further analysis of these variations revealed their association to specific cellular pathways related to protein misfolding, oxidative stress, and proteasome activity. Conversely, the influence of cell passage numbers on the proteome is minor, suggesting a reliable range for conducting reproducible biological replicates. Notable, substantial proteome alterations occur over-time post-differentiation of dTHP-1 cells, particularly impacting pathways crucial for macrophage function. This finding is key for the interpretation of experimental results. These results highlight the need for standardized culture conditions in proteomic-based evaluations of treatment effects to ensure reliable results, a prerequisite for achieving regulatory acceptance of proteomics data.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article