Your browser doesn't support javascript.
loading
Mass Spectrometry Imaging for the Characterization of C═C Localization in Unsaturated Lipid Isomers at the Single-Cell Level.
Qi, Chengjian; Li, Xiaoni; Li, Qian; Shi, Xiujuan; Xia, Meng-Chan; Chen, Yanhua; Wang, Zhaoying; Abliz, Zeper.
Afiliação
  • Qi C; Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
  • Li X; Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
  • Li Q; Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, China.
  • Shi X; Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
  • Xia MC; National Narcotics Laboratory Beijing Regional Center, Beijing 100164, China.
  • Chen Y; Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
  • Wang Z; Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing 100081, China.
  • Abliz Z; Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
Anal Chem ; 2024 Sep 13.
Article em En | MEDLINE | ID: mdl-39269953
ABSTRACT
Unsaturated lipids with carbon-carbon double bonds (C═C) have been implicated in the pathogenesis of various diseases. While mass spectrometry imaging (MSI) has been employed to map the distribution of lipid isomers in tissue sections, the identification of lipid C═C positional isomers at the single-cell level using MSI poses a significant challenge. In this study, we developed a novel approach utilizing ToF-SIMS in conjunction with the Paternò-Büchi (P-B) photochemical reaction to characterize the C═C localization in unsaturated lipid isomers at the single-cell level. The P-B reaction was employed to produce adduct products, which were subsequently subjected to collision-induced dissociation by the primary ion beam of ToF-SIMS to generate characteristic ion pairs indicative of the presence of C═C bonds. Utilizing this approach, lipid isomers in brain and skeletal tissues from mice, as well as different cell lines, were visualized at single-cell resolution. Furthermore, distinct variations in the composition of FA 181 isomers across different microregions and cell types were revealed. Our P-B ToF-SIMS approach enables the accurate identification and characterization of complex lipid structures with remarkable spatial resolution and can be helpful in understanding the physiological role of these C═C positional isomers.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article