Your browser doesn't support javascript.
loading
The microsporidian spore invasion tube. II. Role of calcium in the activation of invasion tube discharge.
J Cell Biol ; 93(3): 970-5, 1982 Jun.
Article em En | MEDLINE | ID: mdl-6811603
A swelling response by the polaroplast organelle initiated microsporidian invasion tube extrusions by Glugea hertwigi spores. The tumescence was induced by the displacement of internal calcium. Sodium citrate, phosphate, and the calcium ionophore A23187 were effective in initiating polaroplast swelling and spore discharge; however, the addition of external CaCl2 switched the expanded polaroplasts to a contracted state and blocked spore discharge. Unlike CaCl2, equivalent concentrations of KCl, NaCl, MgCl2, and BaCl2 did not induced polaroplast contraction, and spore discharge was not blocked. 45CaCl2 readily incorporated into spores with expanded polaroplasts; however, little calcium uptake was apparent in spores with contracted polaroplasts. Metallochromic arsenazo III yielded a color spectrum characteristic of the dye-Ca++ complex in the polaroplast region; furthermore, a membrane association with calcium was indicated by strong chlorotetracycline fluorescence within the polaroplast; this fluorescence was extinguished by pretreating spores with ionophore A23187. An association of the membrane with calcium was also indicated by a potassium ferrocyanide-osmium tetroxide technique. All evidence indicates that an internal calcium displacement is an important initial step in the swelling response of the polaroplast organelle.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cálcio / Microsporum Idioma: En Ano de publicação: 1982 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cálcio / Microsporum Idioma: En Ano de publicação: 1982 Tipo de documento: Article