GM1 ganglioside administration partially counteracts the morphological changes associated with haloperidol treatment within the dorsal striatum of the rat.
Psychopharmacology (Berl)
; 121(4): 461-9, 1995 Oct.
Article
em En
| MEDLINE
| ID: mdl-8619009
Haloperidol, a typical antipsychotic drug, causes an increase in the mean percentage of synapses within the situation containing a discontinuous, or perforated, postsynaptic density (PSD) following 1 month of treatment (Meshul et al. 1994). This effect is not observed with the atypical antipsychotic drug, clozapine, following subchronic administration (Meshul et al. 1992a). This morphological change is also associated with an increase in the density of dopamine D2 receptors. The synapses containing the perforated PSD are asymmetrical and the nerve terminals contain the neurotransmitter, glutamate, as demonstrated by immunocytochemistry. We have also shown that subchronic treatment with haloperidol (0.5 mg/kg per day, 30 days) results in a decrease in the density of glutamate immunoreactivity within asymmetric nerve terminals associated with perforated and non-perforated PSDs (Meshul and Tan 1994). This could be due to an increase in glutamate release, perhaps due to activation of corticostriatal synapses. Agnati et el. (1983a) reported that administration of GM1 ganglioside blocks the increase in dopamine D2 receptors following haloperidol treatment. GM1 has also been shown to attenuate the release of glutamate (Nicoletti et al. 1989). In order to determine if similar treatment with ganglioside could block the haloperidol-induced ultrastructural changes notes above, rats were co-administered GM1 (10 mg/kg per day) and haloperidol (0.5 mg/kg per day) for 30 days. We report that GM1 blocked the haloperidol-induced increase in striatal asymmetric synapses containing a perforated PSD, but had no effect on the increase in dopamine D2 receptors or the decrease in nerve terminal glutamate immunoreactivity. GM1, either alone or co-administered with haloperidol, also caused a small, but significant, increase in the density of all asymmetric synapses within the striatum. It is possible that the effect of GM1 in attenuating the haloperidol-induced change in glutamate synapses with perforated PSDs is primarily postsynaptic, since GM1 did not block the change in density of glutamate immunoreactivity within asymmetric nerve terminals.
Buscar no Google
Base de dados:
MEDLINE
Assunto principal:
Corpo Estriado
/
Gangliosídeos
/
Haloperidol
Tipo de estudo:
Risk_factors_studies
Limite:
Animals
Idioma:
En
Ano de publicação:
1995
Tipo de documento:
Article