Your browser doesn't support javascript.
loading
Incomplete data sets: coping with inadequate databases.
Albert, R H; Horwitz, W.
Afiliação
  • Albert RH; U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition (HFS-500), Washington, DC 20204, USA.
J AOAC Int ; 78(6): 1513-5, 1995.
Article em En | MEDLINE | ID: mdl-8664590
Three problems arise in handling numerical values in databases: bad data, missing data, and sloppy data. The effects of bad data are mitigated by using statistical subterfuges such as robust statistics or outlier removal. Missing data are replaced by creating a substitute through interpolation or by using statistics appropriate to unbalanced designs. Sloppy, semiquantitative data are relegated to innocuous positions by using nonparametric, rank, or attribute statistics. These techniques are illustrated by the telephone directory, a database of carcinogenicity test results, and a database of precision parameters derived from method performance (collaborative) studies.
Assuntos
Buscar no Google
Base de dados: MEDLINE Assunto principal: Interpretação Estatística de Dados / Bases de Dados Factuais Idioma: En Ano de publicação: 1995 Tipo de documento: Article
Buscar no Google
Base de dados: MEDLINE Assunto principal: Interpretação Estatística de Dados / Bases de Dados Factuais Idioma: En Ano de publicação: 1995 Tipo de documento: Article