The Spectrum of Hot Water: Rotational Transitions and Difference Bands in the (020), (100), and (001) Vibrational States
J Mol Spectrosc
; 186(2): 213-21, 1997 Dec.
Article
em En
| MEDLINE
| ID: mdl-9446759
Analysis of the hot H2 16O spectrum, presented by Polyansky et al. (1996, J. Mol. Spectrosc. 176, 305-315), is extended to higher vibrational states. Three hundred thirty mainly strong lines are assigned to pure rotational transitions in the (100), (001), and (020) vibrational states. These lines, which involve significantly higher rotational energy levels than were known previously, are assigned using high-accuracy variational calculations. Transitions in (020) are assigned up to Ka = 18, compared with the maximum Ka of 10 known previously. Crossings of vibration-rotation energy levels result in the observation of extra intensity-stealing transitions. In particular, this leads to the assignment of (020)-(100) and (100)-(020) rotational difference band transitions in addition to the conventional pure rotational lines in (020) and (100) states. These extra lines increase the number of transitions and they are likely to complicate the pure rotational water spectrum in higher excited vibrational states to an even greater extent. A few lines from our previous work on the pure rotational spectrum of hot water in the (000) and (010) vibrational states are also reassigned and some further assignments are made. Copyright 1997 Academic Press. Copyright 1997Academic Press
Buscar no Google
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
1997
Tipo de documento:
Article