RESUMO
Increased recruitment of transitional and non-classical monocytes in the lung during SARS-CoV-2 infection is associated with COVID-19 severity. However, whether specific innate sensors mediate the activation or differentiation of monocytes in response to different SARS-CoV-2 proteins remain poorly characterized. Here, we show that SARS-CoV-2 Spike 1 but not nucleoprotein induce differentiation of monocytes into transitional or non-classical subsets from both peripheral blood and COVID-19 bronchoalveolar lavage samples in a NFκB-dependent manner, but this process does not require inflammasome activation. However, NLRP3 and NLRC4 differentially regulated CD86 expression in monocytes in response to Spike 1 and Nucleoprotein, respectively. Moreover, monocytes exposed to Spike 1 induce significantly higher proportions of Th1 and Th17 CD4 + T cells. In contrast, monocytes exposed to Nucleoprotein reduce the degranulation of CD8 + T cells from severe COVID-19 patients. Our study provides insights in the differential impact of innate sensors in regulating monocytes in response to different SARS-CoV-2 proteins, which might be useful to better understand COVID-19 immunopathology and identify therapeutic targets.
Assuntos
COVID-19 , Inflamassomos , Humanos , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , COVID-19/patologia , Inflamassomos/metabolismo , Monócitos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nucleoproteínas/metabolismo , SARS-CoV-2/metabolismoRESUMO
Some patients with COVID-19 pneumonia develop an associated cytokine storm syndrome that aggravates the pulmonary disease. These patients may benefit of anti-inflammatory treatment. The role of colchicine in hospitalized patients with COVID-19 pneumonia and established hyperinflammation remains unexplored. In a prospective, randomized controlled, observer-blinded endpoint, investigator-initiated trial, 240 hospitalized patients with COVID-19 pneumonia and established hyperinflammation were randomly allocated to receive oral colchicine or not. The primary efficacy outcome measure was a composite of non-invasive mechanical ventilation (CPAP or BiPAP), admission to the intensive care unit, invasive mechanical ventilation requirement or death. The composite primary outcome occurred in 19.3% of the total study population. The composite primary outcome was similar in the two arms (17% in colchicine group vs. 20.8% in the control group; p = 0.533) and the same applied to each of its individual components. Most patients received steroids (98%) and heparin (99%), with similar doses in both groups. In this trial, including adult patients with COVID-19 pneumonia and associated hyperinflammation, no clinical benefit was observed with short-course colchicine treatment beyond standard care regarding the combined outcome measurement of CPAP/BiPAP use, ICU admission, invasive mechanical ventilation or death (Funded by the Community of Madrid, EudraCT Number: 2020-001841-38; 26/04/2020).
Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Adulto , COVID-19/complicações , Colchicina/uso terapêutico , Humanos , Unidades de Terapia Intensiva , Estudos Prospectivos , Respiração ArtificialRESUMO
Background: Interleukin 6 (IL6) levels and SARS-CoV-2 viremia have been correlated with COVID-19 severity. The association over time between them has not been assessed in a prospective cohort. Our aim was to evaluate the relationship between SARS-CoV-2 viremia and time evolution of IL6 levels in a COVID-19 prospective cohort. Methods: Secondary analysis from a prospective cohort including COVID-19 hospitalized patients from Hospital Universitario La Princesa between November 2020 and January 2021. Serial plasma samples were collected from admission until discharge. Viral load was quantified by Real-Time Polymerase Chain Reaction and IL6 levels with an enzyme immunoassay. To represent the evolution over time of both variables we used the graphic command twoway of Stata. Results: A total of 57 patients were recruited, with median age of 63 years (IQR [53-81]), 61.4% male and 68.4% Caucasian. The peak of viremia appeared shortly after symptom onset in patients with persistent viremia (more than 1 sample with > 1.3 log10 copies/ml) and also in those with at least one IL6 > 30 pg/ml, followed by a progressive increase in IL6 around 10 days later. Persistent viremia in the first week of hospitalization was associated with higher levels of IL6. Both IL6 and SARS-CoV-2 viral load were higher in males, with a quicker increase with age. Conclusion: In those patients with worse outcomes, an early peak of SARS-CoV-2 viral load precedes an increase in IL6 levels. Monitoring SARS-CoV-2 viral load during the first week after symptom onset may be helpful to predict disease severity in COVID-19 patients.
RESUMO
BACKGROUND: In-hospital mortality in patients with coronavirus disease 2019 (COVID-19) is high. Simple prognostic indices are needed to identify patients at high-risk of COVID-19 health outcomes. We aimed to determine the usefulness of the CONtrolling NUTritional status (CONUT) index as a potential prognostic indicator of mortality in COVID-19 patients upon hospital admission. METHODS: Our study design is of a retrospective observational study in a large cohort of COVID-19 patients. In addition to descriptive statistics, a Kaplan-Meier mortality analysis and a Cox regression were performed, as well as receiver operating curve (ROC). RESULTS: From February 5, 2020 to January 21, 2021, there was a total of 2969 admissions for COVID-19 at our hospital, corresponding to 2844 patients. Overall, baseline (within 4 days of admission) CONUT index could be scored for 1627 (57.2%) patients. Patients' age was 67.3â±â16.5 years and 44.9% were women. The CONUT severity distribution was: 194 (11.9%) normal (0-1); 769 (47.2%) light (2-4); 585 (35.9%) moderate (5-8); and 79 (4.9%) severe (9-12). Mortality of 30 days after admission was 3.1% in patients with normal risk CONUT, 9.0% light, 22.7% moderate, and 40.5% in those with severe CONUT (Pâ<â0.05). An increased risk of death associated with a greater baseline CONUT stage was sustained in a multivariable Cox regression model (Pâ<â0.05). An increasing baseline CONUT stage was associated with a longer duration of admission, a greater requirement for the use of non-invasive and invasive mechanical ventilation, and other clinical outcomes (all Pâ<â0.05). The ROC of CONUT for mortality had an area under the curve (AUC) and 95% confidence interval of 0.711 (0.676-0746). CONCLUSION: The CONUT index upon admission is potentially a reliable and independent prognostic indicator of mortality and length of hospitalization in COVID-19 patients.
Assuntos
COVID-19 , Idoso , Idoso de 80 Anos ou mais , Feminino , Hospitalização , Hospitais , Humanos , Pessoa de Meia-Idade , Avaliação Nutricional , Estado Nutricional , Avaliação de Resultados em Cuidados de Saúde , Prognóstico , Estudos Retrospectivos , SARS-CoV-2RESUMO
SARS-CoV-2 is responsible for the development of coronavirus disease 2019 (COVID-19) in infected individuals, who can either exhibit mild symptoms or progress toward a life-threatening acute respiratory distress syndrome (ARDS). Exacerbated inflammation and dysregulated immune responses involving T and myeloid cells occur in COVID-19 patients with severe clinical progression. However, the differential contribution of specific subsets of dendritic cells and monocytes to ARDS is still poorly understood. In addition, the role of CD8+ T cells present in the lung of COVID-19 patients and relevant for viral control has not been characterized. Here, we have studied the frequencies and activation profiles of dendritic cells and monocytes present in the blood and lung of COVID-19 patients with different clinical severity in comparison with healthy individuals. Furthermore, these subpopulations and their association with antiviral effector CD8+ T cell subsets were also characterized in lung infiltrates from critical COVID-19 patients. Our results indicate that inflammatory transitional and nonclassical monocytes and CD1c+ conventional dendritic cells preferentially migrate from blood to lungs in patients with severe COVID-19. Thus, this study increases the knowledge of specific myeloid subsets involved in the pathogenesis of COVID-19 disease and could be useful for the design of therapeutic strategies for fighting SARS-CoV-2 infection.
Assuntos
Antígenos CD1/imunologia , COVID-19/imunologia , Movimento Celular/imunologia , Glicoproteínas/imunologia , Pulmão/imunologia , Monócitos/imunologia , Síndrome do Desconforto Respiratório/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , COVID-19/patologia , Células Dendríticas/imunologia , Células Dendríticas/patologia , Feminino , Humanos , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Monócitos/classificação , Monócitos/patologia , Índice de Gravidade de DoençaRESUMO
The SARS-CoV-2 is responsible for the pandemic COVID-19 in infected individuals, who can either exhibit mild symptoms or progress towards a life-threatening acute respiratory distress syndrome (ARDS). It is known that exacerbated inflammation and dysregulated immune responses involving T and myeloid cells occur in COVID-19 patients with severe clinical progression. However, the differential contribution of specific subsets of dendritic cells and monocytes to ARDS is still poorly understood. In addition, the role of CD8+ T cells present in the lung of COVID-19 patients and relevant for viral control has not been characterized. With the aim to improve the knowledge in this area, we developed a cross-sectional study, in which we have studied the frequencies and activation profiles of dendritic cells and monocytes present in the blood of COVID-19 patients with different clinical severity in comparison with healthy control individuals. Furthermore, these subpopulations and their association with antiviral effector CD8+ T cell subsets were also characterized in lung infiltrates from critical COVID-19 patients. Collectively, our results suggest that inflammatory transitional and non-classical monocytes preferentially migrate from blood to lungs in patients with severe COVID-19. CD1c+ conventional dendritic cells also followed this pattern, whereas CD141+ conventional and CD123hi plasmacytoid dendritic cells were depleted from blood but were absent in the lungs. Thus, this study increases the knowledge on the pathogenesis of COVID-19 disease and could be useful for the design of therapeutic strategies to fight SARS-CoV-2 infection.