Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Glia ; 66(1): 94-107, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28887860

RESUMO

Radial glial cells play an essential role through their function as guides for neuronal migration during development. Disruption of metabotropic glutamate receptor 5 (mGluR5) function retards the growth of radial glial processes in vitro. Neuregulins (NRG) are activated by proteolytic cleavage and regulate (radial) glial maintenance via ErbB3/ErbB4 receptors. We show here that blocking ErbB4 disrupts radial process extension. Soluble NRG acting on ErbB4 receptors is able to promote radial process extension in particular where process elongation has been impeded by blockade of mGluR5, the nonselective cation channel canonical transient receptor potential 3 (TRPC3), or matrix metalloproteases (MMP). NRG does not restore retarded process growth caused by ErbB4 blockade. Stimulation of muscarinic receptors restores process elongation due to mGluR5 blockade but not that caused by TRPC3, MMP or ErbB4 blockade suggesting that muscarinic receptors can replace mGluR5 with respect to radial process extension. Additionally, NRG/ErbB4 causes Ca2+ mobilization in a population of cells through cooperation with ErbB1 receptors. Our results indicate that mGluR5 promotes radial process growth via NRG activation by a mechanism involving TRPC3 channels and MMPs. Thus neurotransmitters acting on G-protein coupled receptors could play a central role in the maintenance of the radial glial scaffold through activation of NRG/ErbB4 signaling.


Assuntos
Células Ependimogliais/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Neurregulinas/metabolismo , Receptor ErbB-4/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPC/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Embrião de Mamíferos , Células Ependimogliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Ventrículos Laterais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Neurregulinas/genética , RNA Mensageiro/metabolismo , Receptor ErbB-4/genética , Receptor de Glutamato Metabotrópico 5/genética , Transdução de Sinais/fisiologia , Canais de Cátion TRPC/genética
2.
J Immunol ; 197(8): 3315-3325, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27638862

RESUMO

Extracellular ATP is an endogenous danger signal that is known to activate inflammatory responses in innate immune cells, including macrophages. Activated macrophages start to secrete proteins to induce an immune response, as well as to recruit other immune cells to the site of infection and tissue damage. In this study, we characterized the secretome (i.e., the global pattern of secreted proteins) of ATP-stimulated human macrophages. We show that ATP stimulation activates robust vesicle-mediated unconventional protein secretion, including exosome release and membrane shedding, from human macrophages. Pathway analysis of the identified secreted proteins showed that calpain-related pathways were overrepresented in the secretome of ATP-stimulated cells. In accordance with this, calpains, which are calcium-dependent nonlysosomal cysteine proteases, were activated upon ATP stimulation through a P2X purinoceptor 7 receptor-dependent pathway. Functional studies demonstrated that calpain activity is essential for the P2X purinoceptor 7 receptor-mediated activation of unconventional protein secretion. Unconventional protein secretion was followed by cell necrosis and NLRP3 inflammasome-mediated secretion of the mature form of the proinflammatory cytokine IL-1ß. Furthermore, ATP-driven NLRP3 inflammasome activation was also dependent on calpain activity. Interestingly, pro-IL-1ß and inflammasome components ASC and caspase-1 were released by ATP-activated macrophages through a vesicle-mediated secretion pathway. In conclusion, to our knowledge, we provide the first global characterization of proteins secreted by ATP-activated human macrophages and show a pivotal role for calpains in the activation of the inflammatory response during ATP exposure.


Assuntos
Trifosfato de Adenosina/metabolismo , Calpaína/metabolismo , Inflamassomos/metabolismo , Macrófagos/metabolismo , Humanos , Inflamassomos/imunologia , Macrófagos/imunologia
3.
J Biol Chem ; 288(19): 13410-9, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23530046

RESUMO

BACKGROUND: Local acidosis has been demonstrated in ischemic tissues and at inflammatory sites. RESULTS: Acidic extracellular pH triggers NLRP3 inflammasome activation and interleukin-1ß secretion in human macrophages. CONCLUSION: Acidic pH represents a novel danger signal alerting the innate immunity. SIGNIFICANCE: Local acidosis may promote inflammation at ischemic and inflammatory sites. Local extracellular acidification has been demonstrated at sites of ischemia and inflammation. IL-1ß is one of the key proinflammatory cytokines, and thus, its synthesis and secretion are tightly regulated. The NLRP3 (nucleotide-binding domain leucine-rich repeat containing family, pyrin domain containing 3) inflammasome complex, assembled in response to microbial components or endogenous danger signals, triggers caspase-1-mediated maturation and secretion of IL-1ß. In this study, we explored whether acidic environment is sensed by immune cells as an inflammasome-activating danger signal. Human macrophages were exposed to custom cell culture media at pH 7.5-6.0. Acidic medium triggered pH-dependent secretion of IL-1ß and activation of caspase-1 via a mechanism involving potassium efflux from the cells. Acidic extracellular pH caused rapid intracellular acidification, and the IL-1ß-inducing effect of acidic medium could be mimicked by acidifying the cytosol with bafilomycin A1, a proton pump inhibitor. Knocking down the mRNA expression of NLRP3 receptor abolished IL-1ß secretion at acidic pH. Remarkably, alkaline extracellular pH strongly inhibited the IL-1ß response to several known NLRP3 activators, demonstrating bipartite regulatory potential of pH on the activity of this inflammasome. The data suggest that acidic environment represents a novel endogenous danger signal alerting the innate immunity. Low pH may thus contribute to inflammation in acidosis-associated pathologies such as atherosclerosis and post-ischemic inflammatory responses.


Assuntos
Acidose/metabolismo , Proteínas de Transporte/metabolismo , Imunidade Inata , Inflamassomos/metabolismo , Macrófagos/imunologia , Acidose/imunologia , Animais , Proteínas de Transporte/genética , Caspase 1/metabolismo , Hipóxia Celular , Células Cultivadas , Meios de Cultura , Citocinas/genética , Citocinas/metabolismo , Ativação Enzimática , Líquido Extracelular/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Macrolídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Potássio/metabolismo , Inibidores da Bomba de Prótons/farmacologia , Ativação Transcricional
4.
J Neural Transm (Vienna) ; 121(8): 819-36, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24562403

RESUMO

The mammalian central nervous system derives from multipotent neural progenitor cells (NPCs) of the developing brain. During development the progenitor cells have enormous potential. They proliferate actively and differentiate into all the three main cell types, i.e., neurons, astrocytes and oligodendrocytes, of the adult brain through a tightly regulated process that coordinates cell proliferation, survival, migration, differentiation and apoptosis. This process is regulated by multiple extracellular signals including neurotrophic factors, chemoattractants and neurotransmitters in a coordinated manner. The main excitatory neurotransmitter glutamate is involved in promoting and/or inhibiting the proliferation, survival, migration and differentiation of NPCs acting via ionotropic or metabotropic receptors. The role of glutamate in the regulation of cortical NPCs has been most extensively studied. Glutamate appears to have a similar role in hippocampal, striatal as well as adult neural progenitors. Ionotropic α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate (KA) receptors and metabotropic glutamate receptor 5 (mGluR5) are expressed early during embryonic development as well as in the neurogenic zones of the adult brain. Ca(2+)-permeable AMPA/KA receptors are initially of importance for cell proliferation and neuronal motility. At later stages of development N-methyl-D-aspartate (NMDA) receptors have a more prominent role. MGluR5, which is the main metabotropic glutamate receptor during early development, is expressed in early progenitors and radial glial cells. Activation of this receptor promotes the proliferation and survival of NPCs. MGluR5 is involved in the extension of radial glial processes and in regulation of the migration of early cortical neurons.


Assuntos
Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Ácido Glutâmico/metabolismo , Células-Tronco Neurais/fisiologia , Receptores de Glutamato/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Humanos , Neurogênese/fisiologia
5.
Eur J Neurosci ; 37(9): 1369-82, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23383979

RESUMO

Neurotransmitters such as glutamate are potential regulators of neurogenesis. Interference with defined glutamate receptor subtypes affects proliferation, migration and differentiation of neural progenitor cells. The cellular targets for the actions of different glutamate receptor ligands are less well known. In this study we have combined calcium imaging, measurement of membrane potential, time-lapse imaging and immunocytochemistry to obtain a spatial overview of migrating mouse embryonic neural progenitor cell-derived cells responding to glutamate receptor agonists and antagonists. Responses via metabotropic glutamate receptor 5 correlated with radial glial cells and dominated in the inner migration zones close to the neurosphere. Block of metabotropic glutamate receptor 5 resulted in shorter radial glial processes, a transient increase in neuron-like cells emerging from the neurosphere and increased motility of neuron-like cells. α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptors are present on the majority of migrating neuronal cells, which with time accumulate at the outer edge of the migration zone. Blocking these receptors leads to an enhanced extension of radial glial processes and a reduced motility of neuron-like cells. Our results indicate that functional glutamate receptors have profound effects on the motility of neural progenitor cells. The main target for metabotropic glutamate receptor 5 appears to be radial glial cells while AMPA/kainate receptors are mainly expressed in newborn neuronal cells and regulate the migratory progress of these cells. The results suggest that both metabotropic glutamate receptor 5 and AMPA/kainate receptors are of importance for the guidance of migrating embryonic progenitor cells.


Assuntos
Movimento Celular/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Células-Tronco Neurais/citologia , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/fisiologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Potenciais da Membrana , Camundongos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/fisiologia , Neurogênese , Neuroglia/citologia , Neuroglia/metabolismo , Neuroglia/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Neurônios/fisiologia , Receptor de Glutamato Metabotrópico 5 , Receptores de AMPA/metabolismo , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inibidores
6.
Biochem Biophys Res Commun ; 417(1): 93-7, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22138651

RESUMO

Muscarinic toxins (MTs) are snake venom peptides found to selectively target specific subtypes of G-protein-coupled receptors. In here, we have attached a glycosylphosphatidylinositol (GPI) tail to three different toxin molecules and evaluated their receptor-blocking effects in a heterologous expression system. MT7-GPI remained anchored to the cell surface and selectively inhibited M(1) muscarinic receptor signaling expressed in the same cell. To further demonstrate the utility of the GPI tail, we generated MT3- and MTα-like gene sequences and fused these to the signal sequence for GPI attachment. Functional assessment of these membrane-anchored toxins on coexpressed target receptors indicated a prominent antagonistic effect. In ligand binding experiments the GPI-anchored toxins were found to exhibit similar selection profiles among receptor subtypes as the soluble toxins. The results indicate that GPI attachment of MTs and related receptor toxins could be used to assess the role of receptor subtypes in specific organs or even cells in vivo by transgenic approaches.


Assuntos
Venenos Elapídicos/química , Glicosilfosfatidilinositóis/química , Antagonistas Muscarínicos/química , Neurotoxinas/química , Peptídeos/química , Receptor Muscarínico M1/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Linhagem Celular , Venenos Elapídicos/genética , Venenos Elapídicos/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular , Dados de Sequência Molecular , Antagonistas Muscarínicos/farmacologia , Neurotoxinas/genética , Neurotoxinas/farmacologia , Peptídeos/genética , Peptídeos/farmacologia , Ensaio Radioligante
7.
Pharmacol Res ; 65(1): 149-58, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22133672

RESUMO

Peripheral diabetic neuropathy (PDN) is a devastating complication of diabetes mellitus (DM). Here we test the hypothesis that the transient receptor potential ankyrin 1 (TRPA1) ion channel on primary afferent nerve fibers is involved in the pathogenesis of PDN, due to sustained activation by reactive compounds generated in DM. DM was induced by streptozotocin in rats that were treated daily for 28 days with a TRPA1 channel antagonist (Chembridge-5861528) or vehicle. Laser Doppler flow method was used for assessing axon reflex induced by intraplantar injection of a TRPA1 channel agonist (cinnamaldehyde) and immunohistochemistry to assess substance P-like innervation of the skin. In vitro calcium imaging and patch clamp were used to assess whether endogenous TRPA1 agonists (4-hydroxynonenal and methylglyoxal) generated in DM induce sustained activation of the TRPA1 channel. Axon reflex induced by a TRPA1 channel agonist in the plantar skin was suppressed and the number of substance P-like immunoreactive nerve fibers was decreased 4 weeks after induction of DM. Prolonged treatment with Chembridge-5861528 reduced the DM-induced attenuation of the cutaneous axon reflex and loss of substance P-like immunoreactive nerve fibers. Moreover, in vitro calcium imaging and patch clamp results indicated that reactive compounds generated in DM (4-hydroxynonenal and methylglyoxal) produced sustained activations of the TRPA1 channel, a prerequisite for adverse long-term effects. The results indicate that the TRPA1 channel exerts an important role in the pathogenesis of PDN. Blocking the TRPA1 channel provides a selective disease-modifying treatment of PDN.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Fibras Nervosas/efeitos dos fármacos , Neurônios Aferentes/efeitos dos fármacos , Fármacos do Sistema Sensorial/farmacologia , Pele/inervação , Canais de Cátion TRPC/antagonistas & inibidores , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/fisiopatologia , Células HEK293 , Humanos , Masculino , Potenciais da Membrana , Fibras Nervosas/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Condução Nervosa/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Limiar da Dor/efeitos dos fármacos , Ratos , Reflexo/efeitos dos fármacos , Substância P/metabolismo , Canal de Cátion TRPA1 , Canais de Cátion TRPC/agonistas , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Fatores de Tempo , Transfecção , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo
8.
Biotechnol Appl Biochem ; 59(4): 314-21, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23586865

RESUMO

The effect of the Rous sarcoma virus (RSV) long terminal repeat enhancer/promoter on expression levels of complementary DNAs (cDNAs) encoding seven transmembrane receptors was studied using the baculovirus expression vector system. Expression of the human α(2B)-adrenoceptor (AR) cDNA under the control of the polyhedrin (POL) promoter produced up to 7.6 pmol/mg protein at 28 H post infection (p.i.) in Sf9 cells. The addition of the RSV promoter increased the expression to 11.6 pmol/mg protein. Dramatic increases in expression levels at early times were also obtained with the α(2A)-AR, the M1 and M4 muscarinic receptors, and the orexin OX1 receptor. Analysis of the time-dependent expression revealed that expression driven by the RSV promoter reaches almost maximum 24 H p.i. and that this promoter is superior to the often used POL promoter at early times p.i. when functional studies need to be performed. Functional enhancement of signaling as a result of early expression is demonstrated with the α(2B)-AR and the OX1 receptor. Finally, enhanced green fluorescent protein fluorescence in living cells was used to monitor expression by various viral promoters. The results verified the early transcriptional activity of the RSV promoter, whereas the cytomegalovirus promoter was found to be poorly active in Sf9 cells.


Assuntos
Baculoviridae/genética , Baculoviridae/fisiologia , Engenharia Genética/métodos , Regiões Promotoras Genéticas/genética , Receptores de Superfície Celular/genética , Vírus do Sarcoma de Rous/genética , Animais , Expressão Gênica , Vetores Genéticos/genética , Humanos , Células Sf9 , Spodoptera
9.
Neurochem Int ; 159: 105387, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35835292

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated channels (HCN channels) are involved in spontaneous activity in many electrically active cell types such as cardiomyocytes and neurons. In this study, the role of HCN channels in proliferation and migration of Nestin and Sox2 expressing embryonic neural progenitor cells (NPC) originating from the subventricular zone (SVZ) was examined. Immunostaining and PCR data showed that the HCN2 subtype was highly expressed in these cells. Patch clamp recordings revealed a hyperpolarization-activated current, which was sensitive to inhibitors of HCN channels. Using the fluorescence dye bis-(1,3-dibutylbarbituric acid)-trimethineoxonol (DiBAC(4)(3)) we found that a prompt reduction of the extracellular K+ concentration, or exposing the cells to acute hypoxia, induced an instant hyperpolarization in the whole cell population. Recovery from low K+ induced hyperpolarization after extracellular calcium removal, or by re-oxygenation of hypoxic cells, was sensitive to ZD7288, a HCN channel inhibitor. Treatment of neurosphere cultures from the SVZ with ZD7288 caused a significant and reversible inhibition of neurosphere formation from single cells indicating that proliferation of progenitor cells was reduced. Furthermore, the migration of neuronal cells from neurospheres was considerably retarded in the presence of ZD7288. The results suggest that HCN2 channels are involved in controlling the proliferation of NPC and that HCN2 channel-induced spontaneous electrical activity may trigger the motility response of neurosphere-derived neurons in concert with other ion channels. Furthermore, the response to hypoxia suggests that HCN2 channels may trigger the chemotactic response of NPC to ischemic brain regions seen in many studies.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Proliferação de Células , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Humanos , Hipóxia , Canais de Potássio
10.
Biochim Biophys Acta ; 1803(10): 1206-12, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20621130

RESUMO

The neuropeptides orexin-A/hypocretin-1 (Ox-A) and orexin-B/hypocretin-2 play an important role in the control of energy metabolism via either of two G-protein-coupled receptors, orexin receptor 1 (Ox1R) and 2. Despite its significant physiological functions, signaling via orexin receptors is still poorly characterized. The aim of this study was to improve our understanding of early signaling events triggered by the binding of Ox-A to Ox1R. Using phosphospecific antibodies, we observed that early kinase activation by Ox-A in a HEK293 cell line stably expressing Ox1R (HEKOx1R) included ERK1/2, PKCdelta, and PKD1. Elevation of intracellular Ca(2+) is a well-characterized response to Ox1R activation. Comparison of Ox-A-induced calcium elevation and PKD1 activation demonstrated that both responses are detectable soon after stimulation and increase in a dose-dependent manner, but inhibition of protein kinase C, when low Ox-A concentrations are used, affects them differently. PKD family of protein kinases has 3 members: PKD1, 2, and 3, which are all expressed in HEKOx1R cells. In response to stimulation of the cells with 1nM Ox-A, both PKD1 and PKD3 are activated and increased in the plasma membrane, pointing at a possible role for these kinases in that cell compartment. Overexpression of either kinase-dead PKD1 or kinase-dead PKD3 disrupts Ox-A-induced calcium oscillations demonstrating the functional role of these kinases in modulating physiological responses to Ox-A.


Assuntos
Cálcio/metabolismo , Proteínas Quinases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Western Blotting , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Microscopia de Fluorescência , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neuropeptídeos/farmacologia , Receptores de Orexina , Orexinas , Fosforilação/efeitos dos fármacos , Proteína Quinase C , Proteínas Quinases/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropeptídeos/genética
11.
Neurobiol Dis ; 41(2): 469-80, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21047554

RESUMO

Fragile X syndrome (FXS) is a common cause of inherited mental retardation and the best characterized form of autistic spectrum disorders. FXS is caused by the loss of functional fragile X mental retardation protein (FMRP), which leads to abnormalities in the differentiation of neural progenitor cells (NPCs) and in the development of dendritic spines and neuronal circuits. Brain-derived neurotrophic factor (BDNF) and its TrkB receptors play a central role in neuronal maturation and plasticity. We studied BDNF/TrkB actions in the absence of FMRP and show that an increase in catalytic TrkB expression in undifferentiated NPCs of Fmr1-knockout (KO) mice, a mouse model for FXS, is associated with changes in the differentiation and migration of neurons expressing TrkB in neurosphere cultures and in the developing cortex. Aberrant intracellular calcium responses to BDNF and ATP in subpopulations of differentiating NPCs combined with changes in the expression of BDNF and TrkB suggest cell subtype-specific alterations during early neuronal maturation in the absence of FMRP. Furthermore, we show that dendritic targeting of Bdnf mRNA was increased under basal conditions and further enhanced in cortical layer V and hippocampal CA1 neurons of Fmr1-KO mice by pilocarpine-induced neuronal activity represented by convulsive seizures, suggesting that BDNF/TrkB-mediated feedback mechanisms for strengthening the synapses were compromised in the absence of FMRP. Pilocarpine-induced seizures caused an accumulation of Bdnf mRNA transcripts in the most proximal segments of dendrites in cortical but not in hippocampal neurons of Fmr1-KO mice. In addition, BDNF protein levels were increased in the hippocampus but reduced in the cortex of Fmr1-KO mice in line with regional differences of synaptic plasticity in the brain of Fmr1-KO mice. Altogether, the present data suggest that alterations in the BDNF/TrkB signaling modulate brain development and impair synaptic plasticity in FXS.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diferenciação Celular/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Malformações do Sistema Nervoso/metabolismo , Receptor trkB/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/anormalidades , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos , Camundongos Knockout , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/patologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neurogênese/genética , Plasticidade Neuronal/genética , Receptor trkB/genética , Transmissão Sináptica/genética
12.
Differentiation ; 77(2): 188-98, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19281779

RESUMO

Neurotransmitters are potential regulators of proliferation and differentiation of neural progenitor cells (NPC). To gain insight into the dynamics of neurotransmitter responsiveness, neurospheres were prepared from the lateral ventricles of postnatal day 6/7 mice. Individual NPCs migrating out from spheres were simultaneously monitored using Ca(2+) imaging, during the initial 8 days of differentiation, at an area between the inner edge of the sphere and outer periphery of the area of migration. At the first day of differentiation most cells showed metabotropic responses (Ca(2+) discharge from stores) to glutamate (pharmacologically identified as metabotropic glutamate receptor 5, mGluR 5), norepinephrine (NE), acetylcholine (Ach) and ATP, and a smaller proportion of cells also responded to substance P (SP). When outside the neurosphere, many of mGluR5 responding cells gained immunostaining for markers of neuronal lineage (Tuj-1 and NeuN). The number of cells responding through mGluR5 (and responses to Ach, NE and SP) showed during subsequent days of differentiation (day 2-3 onwards) a decline with time and progressively disappeared at the outer periphery of the area of migration. Conversely the number ionotropic glutamate responses as well as responses to depolarization increased in this area. After 5-8 days of differentiation mGluR5 responses could only be observed at the very inner edge of the neurosphere. At 8 days the migrated cells showed very robust ionotropic responses to glutamate, NMDA and depolarization comparable to mature neurons. Taken together, the data presented here suggest that differentiation of NPCs is a dynamic process triggered by cell migration, which leads to a loss of regulatory influences imposed by the inner milieu of the neurosphere. The subsequent switch or loss of metabotropic responses to glutamate, SP, NE, Ach and ATP with the gain of excitable characteristics such as ionotropic responses appears to be a key event in the final differentiation process.


Assuntos
Diferenciação Celular , Neurotransmissores/metabolismo , Células-Tronco/citologia , Células-Tronco/fisiologia , Agonistas alfa-Adrenérgicos/farmacologia , Animais , Células Cultivadas , Imuno-Histoquímica , Camundongos , Agonistas Muscarínicos/farmacologia , Norepinefrina/farmacologia , Oxotremorina/farmacologia , Células-Tronco/efeitos dos fármacos
13.
Neuroreport ; 31(1): 57-63, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31714480

RESUMO

Self-renewing neural stem cells and progenitor cells are cell populations that generate radial glial cells and neurons through asymmetric division. Regulation of intracellular pH in stem cells with high metabolic activity is critical for both cell signaling and proliferation. We have recently found that a S0859-inhibitable electrogenic Na/HCO3 co-transporter (NBCe1, Slc4a4), is the primary pHi regulatory mechanism in stem cell-derived radial glial-like cells. Here we show, by using the voltage-sensitive fluorescent dye DiBAC4(3) and BCECF, a pH-sensitive dye, that an antioxidant, tannic acid (100 µM), can inhibit potassium- and calcium-dependent rapid changes in membrane potential and NBCe1 mediated pHi regulation in brain-derived glial-like cells in vitro. Furthermore, neural stem cell differentiation and neurosphere formation (proliferation) were completely inhibited by tannic acid. The present study provides evidence that tannic acid is a natural inhibitor of NBCe1. It is tempting to speculate that tannic acid or related compounds that inhibits NBCe1-mediated pHi regulation in glial-like cells may also have bearing on the treatment of glial neoplasms.


Assuntos
Antioxidantes/farmacologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células Ependimogliais/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Simportadores de Sódio-Bicarbonato/metabolismo , Taninos/farmacologia , Animais , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Células Ependimogliais/metabolismo , Camundongos , Células-Tronco Neurais/metabolismo
14.
Stem Cells Dev ; 29(17): 1160-1177, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31941419

RESUMO

Cell-cell communication plays a central role in the guidance of migrating neurons during the development of the cerebral cortex. Neuregulins (NRGs) are essential mediators for migration and maintenance of the radial glial scaffold. We show, in this study that soluble NRG reduces neuronal motility, causes transition of bipolar cells to multipolar ones, and induces neuronal mitosis. Blocking the NRG receptor, ErbB4, results in reduction of neuron-neuron and neuron-radial glial contacts and causes an increase in neuronal motility. Blocking the radial glial metabotropic glutamate receptor 5 (mGluR5), the nonselective cation channel transient receptor potential 3 (TRPC3), or matrix metalloproteinases (MMPs) results in similar effects as ErbB4 blockade. Soluble NRG counteract the changes in motility pattern. Stimulation of other radial glial G-protein-coupled receptors (GPCRs), such as muscarinic acetylcholine receptors or endothelin receptors counteract all the effect of mGluR5 blockade, but not that of ErbB4, TRPC3, and MMP blockade. The results indicate that neurotransmitters and endothelins acting on radial glial GPCRs are, through proteolytic NRG/ErbB4 activation, able to modify the migratory behavior of neurons.


Assuntos
Movimento Celular , Endotelinas/farmacologia , Neocórtex/citologia , Neurregulinas/metabolismo , Neuroglia/metabolismo , Neurotransmissores/farmacologia , Proteólise , Receptor ErbB-4/metabolismo , Animais , Comunicação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteólise/efeitos dos fármacos , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Canais de Cátion TRPC/metabolismo
15.
J Cell Physiol ; 221(1): 67-74, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19507192

RESUMO

TRPA1 and TRPM8 are transient receptor potential (TRP) channels involved in sensory perception. TRPA1 is a non-selective calcium permeable channel activated by irritants and proalgesic agents. TRPM8 reacts to chemical cooling agents such as menthol. The human neuroblastoma cell line IMR-32 undergoes a remarkable differentiation in response to treatment with 5-bromo-2-deoxyuridine. The cells acquire a neuronal morphology with increased expression of N-type voltage gated calcium channels and neurotransmitters. Here we show using RT-PCR, that mRNA for TRPA1 and TRPM8 are strongly upregulated in differentiating IMR-32 cells. Using whole cell patch clamp recordings, we demonstrate that activators of these channels, wasabi, allyl-isothiocyanate (AITC) and menthol activate membrane currents in differentiated cells. Calcium imaging experiments demonstrated that AITC mediated elevation of intracellular calcium levels were attenuated by ruthenium red, spermine, and HC-030031 as well as by siRNA directed against the channel. This indicates that the detected mRNA level correlate with the presence of functional channels of both types in the membrane of differentiated cells. Although the differentiated IMR-32 cells responded to cooling many of the cells showing this response did not respond to TRPA1/TRPM8 channel activators (60% and 90% for AITC and menthol respectively). Conversely many of the cells responding to these activators did not respond to cooling (30%). This suggests that these channels have also other functions than cold perception in these cells. Furthermore, our results suggest that IMR-32 cells have sensory characteristics and can be used to study native TRPA1 and TRPM8 channel function as well as developmental expression.


Assuntos
Canais de Cálcio/metabolismo , Diferenciação Celular , Proteínas do Tecido Nervoso/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Canais de Cátion TRPM/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Cálcio/metabolismo , Cálcio/farmacologia , Canais de Cálcio/genética , Sinalização do Cálcio/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Isotiocianatos/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Neuroblastoma/genética , Técnicas de Patch-Clamp , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Canal de Cátion TRPA1 , Canais de Cátion TRPM/genética , Canais de Potencial de Receptor Transitório/genética
16.
Biochem Biophys Res Commun ; 385(3): 408-12, 2009 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-19464259

RESUMO

Oscillations of intracellular Ca2+ provide a novel mechanism for sustained activation of cellular processes. Receptor-activated oscillations are mainly thought to occur through rhythmic IP3-dependent store discharge. However, as shown here in HEK293 cells 1 nM orexin-A (Ox-A) acting at OX1 receptors (OX1R) triggered oscillatory Ca2+ responses, requiring external Ca2+. These responses were attenuated by interference with TRPC3 channel (but not TRPC1/4) function using dominant negative constructs, elevated Mg2+ (a blocker of many TRP channels) or inhibition of phospholipase A2. These treatments did not affect Ca2+ oscillations elicited by high concentrations of Ox-A (100 nM) in the absence of external Ca2+. OX1R are thus able to activate TRPC(3)-channel-dependent oscillatory responses independently of store discharge.


Assuntos
Sinalização do Cálcio , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Canais de Cátion TRPC/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Receptores de Orexina , Orexinas , Receptores Acoplados a Proteínas G/agonistas , Receptores de Neuropeptídeos/agonistas , Canais de Cátion TRPC/antagonistas & inibidores
17.
Biochim Biophys Acta Biomembr ; 1861(6): 1037-1048, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30890468

RESUMO

A stroke causes a hypoxic brain microenvironment that alters neural cell metabolism resulting in cell membrane hyperpolarization and intracellular acidosis. We studied how intracellular pH (pHi) is regulated in differentiated mouse neural progenitor cells during hyperpolarizing conditions, induced by prompt reduction of the extracellular K+ concentration. We found that the radial glia-like population in differentiating embryonic neural progenitor cells, but not neuronal cells, was rapidly acidified under these conditions. However, when extracellular calcium was removed, an instant depolarization and recovery of the pHi, back to normal levels, took place. The rapid recovery phase seen in the absence of calcium, was dependent on extracellular bicarbonate and could be inhibited by S0859, a potent Na/HCO3 cotransporter inhibitor. Immunostaining and PCR data, showed that NBCe1 (SLC4A4) and NBCn1 (SLC4A7) were expressed in the cell population and that the pHi recovery in the radial glial-like cells after calcium removal was mediated mainly by the electrogenic sodium bicarbonate transporter NBCe1 (SLC4A4). Our results indicate that extracellular calcium might hamper pHi regulation and Na/HCO3 cotransporter activity in a brain injury microenvironment. Our findings show that the NBC-type transporters are the main pHi regulating systems prevailing in glia-like progenitor cells and that these calcium sensitive transporters are important for neuronal progenitor cell proliferation, survival and neural stem cell differentiation.


Assuntos
Concentração de Íons de Hidrogênio , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Transporte de Íons , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Neurais/citologia , Neuroglia/citologia , Sódio/metabolismo
18.
Neuroscience ; 375: 135-148, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29438802

RESUMO

Cell-cell communication plays a central role in the guidance of migrating neuronal precursor cells during the development of the cerebral cortex. Endocannabinoids (eCBs) have previously been shown to be one of the central factors regulating neuronal migration. In this study the effects of eCBs on different parameters, expected to affect embryonic cortical neuronal motility have been analyzed in neurosphere-derived neuroblasts using time-lapse microscopy. Increased endogenous production of the endocannabinoid 2-arachidonyl glycerol (2-AG) causes bursts of neuroblast motility. The neuroblasts move longer distances and show a low frequency of turning, and the number of neuron-neuron contacts are reduced. Similar changes occur interfering with the function of the metabotropic glutamate receptor 5 (mGluR5) or its transducer canonical transient receptor potential channel 3 (TRPC3) or the neuregulin receptor ErbB4. Blocking of 2-AG production reverses these effects. The data suggest that eCB-regulated neuronal motility is controlled by mGluR5/TRPC3 activity possibly via NRG/ErbB4 signaling.


Assuntos
Comunicação Celular/fisiologia , Movimento Celular/fisiologia , Endocanabinoides/metabolismo , Neurônios/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Ácidos Araquidônicos/antagonistas & inibidores , Ácidos Araquidônicos/metabolismo , Comunicação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Endocanabinoides/antagonistas & inibidores , Receptores ErbB/metabolismo , Glicerídeos/antagonistas & inibidores , Glicerídeos/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neuregulina-1/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Receptor ErbB-4/metabolismo
19.
J Neurosci ; 26(42): 10658-66, 2006 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-17050705

RESUMO

We studied the cellular response to orexin type 1 receptor (OX1R) stimulation in differentiated IMR-32 neuroblastoma cells. In vitro differentiation of IMR-32 cells with 5-bromo-2'-deoxyuridine leads to a neuronal phenotype with long neurite extensions and an upregulation of mainly N-type voltage-gated calcium channels. Transduction of differentiated IMR-32 cells with baculovirus harboring an OX1R-green fluorescent protein cDNA fusion construct resulted in appearance of fluorescence that was confined mainly to the plasma membrane in the cell body and to neurites. Application of orexin-A to fluorescent cells led to an increase in intracellular free Ca2+ concentration, [Ca2+]i. At low nanomolar concentrations of orexin-A, the response was reversibly attenuated by removal of extracellular Ca2+, by application of a high concentration (10 mM) of Mg2+, and by the pharmacological channel blocker dextromethorphan. A diacylglycerol, dioctanoylglycerol, but not thapsigargin or depolarization with potassium, mimicked the OX1R response with regard to Mg2+ sensitivity. A reverse transcription-PCR screening identified mRNAs for all transient receptor potential canonical (TRPC) channels, including TRPC3, TRPC6, and TRPC7, which are known to be activated by diacylglycerol. Expression of a dominant-negative TRPC6 channel subunit blunted the responses to both dioctanoylglycerol and OX1R stimulation. The results suggest that the OX1R activates a Ca2+ entry pathway that involves diacylglycerol-activated TRPC channels in neuronal cells.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Diferenciação Celular/fisiologia , Diglicerídeos/farmacologia , Neuroblastoma/metabolismo , Receptores de Neuropeptídeos/fisiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Insetos , Magnésio/farmacologia , Neuroblastoma/patologia , Receptores de Orexina , Receptores Acoplados a Proteínas G
20.
Mol Endocrinol ; 20(1): 80-99, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16141359

RESUMO

Activation of OX1 orexin receptors heterologously expressed in Chinese hamster ovary (CHO) cells led to a rapid, strong, and long-lasting increase in ERK phosphorylation (activation). Dissection of the signal pathways to ERK using multiple inhibitors and dominant-negative constructs indicated involvement of Ras, protein kinase C, phosphoinositide-3-kinase, and Src. Most interestingly, Ca2+ influx appeared central for the ERK response in CHO cells, and the same was indicated in recombinant neuro-2a cells and cultured rat striatal neurons. Detailed investigations in CHO cells showed that inhibition of the receptor- and store-operated Ca2+ influx pathways could fully attenuate the response, whereas inhibition of the store-operated Ca2+ influx pathway alone or the Ca2+ release was ineffective. If the receptor-operated pathway was blocked, an exogenously activated store-operated pathway could take its place and restore the coupling of OX1 receptors to ERK. Further experiments suggested that Ca2+ influx, as such, may not be required for ERK phosphorylation, but that Ca2+, elevated via influx, acts as a switch enabling OX1 receptors to couple to cascades leading to ERK phosphorylation, cAMP elevation, and phospholipase C activation. In conclusion, the data suggest that the primary coupling of orexin receptors to Ca2+ influx allows them to couple to other signal pathways; in the absence of coupling to Ca2+ influx, orexin receptors can act as signal integrators by taking advantage of other Ca2+ influx pathways.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Receptores de Neuropeptídeos/fisiologia , Animais , Células Cultivadas , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Receptores de Orexina , Orexinas , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Ratos , Receptores Acoplados a Proteínas G , Transdução de Sinais , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA