Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Learn Mem ; 31(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38862177

RESUMO

Associative learning enables the adaptive adjustment of behavioral decisions based on acquired, predicted outcomes. The valence of what is learned is influenced not only by the learned stimuli and their temporal relations, but also by prior experiences and internal states. In this study, we used the fruit fly Drosophila melanogaster to demonstrate that neuronal circuits involved in associative olfactory learning undergo restructuring during extended periods of low-caloric food intake. Specifically, we observed a decrease in the connections between specific dopaminergic neurons (DANs) and Kenyon cells at distinct compartments of the mushroom body. This structural synaptic plasticity was contingent upon the presence of allatostatin A receptors in specific DANs and could be mimicked optogenetically by expressing a light-activated adenylate cyclase in exactly these DANs. Importantly, we found that this rearrangement in synaptic connections influenced aversive, punishment-induced olfactory learning but did not impact appetitive, reward-based learning. Whether induced by prolonged low-caloric conditions or optogenetic manipulation of cAMP levels, this synaptic rearrangement resulted in a reduction of aversive associative learning. Consequently, the balance between positive and negative reinforcing signals shifted, diminishing the ability to learn to avoid odor cues signaling negative outcomes. These results exemplify how a neuronal circuit required for learning and memory undergoes structural plasticity dependent on prior experiences of the nutritional value of food.


Assuntos
Drosophila melanogaster , Corpos Pedunculados , Plasticidade Neuronal , Animais , Corpos Pedunculados/fisiologia , Corpos Pedunculados/metabolismo , Drosophila melanogaster/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios Dopaminérgicos/fisiologia , Neurônios Dopaminérgicos/metabolismo , Ingestão de Alimentos/fisiologia , Optogenética , Aprendizagem por Associação/fisiologia , Olfato/fisiologia , Percepção Olfatória/fisiologia , Recompensa , Animais Geneticamente Modificados
3.
Open Biol ; 12(9): 220096, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36128716

RESUMO

The principles of how brain circuits establish themselves during development are largely conserved across animal species. Connections made during embryonic development that are appropriate for an early life stage are frequently remodelled later in ontogeny via pruning and subsequent regrowth to generate adult-specific connectivity. The mushroom body of the fruit fly Drosophila melanogaster is a well-established model circuit for examining the cellular mechanisms underlying neurite remodelling. This central brain circuit integrates sensory information with learned and innate valences to adaptively instruct behavioural decisions. Thereby, the mushroom body organizes adaptive behaviour, such as associative learning. However, little is known about the specific aspects of behaviour that require mushroom body remodelling. Here, we used genetic interventions to prevent the intrinsic neurons of the larval mushroom body (γ-type Kenyon cells) from remodelling. We asked to what degree remodelling deficits resulted in impaired behaviour. We found that deficits caused hyperactivity and mild impairment in differential aversive olfactory learning, but not appetitive learning. Maintenance of circadian rhythm and sleep were not affected. We conclude that neurite pruning and regrowth of γ-type Kenyon cells is not required for the establishment of circuits that mediate associative odour learning per se, but it does improve distinct learning tasks.


Assuntos
Drosophila , Corpos Pedunculados , Animais , Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Aprendizagem/fisiologia , Odorantes
4.
Front Syst Neurosci ; 11: 76, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29085286

RESUMO

Parkinson's disease (PD) results from a progressive degeneration of the dopaminergic nigrostriatal system leading to a decline in movement control, with resting tremor, rigidity and postural instability. Several aspects of PD can be modeled in the fruit fly, Drosophila melanogaster, including α-synuclein-induced degeneration of dopaminergic neurons, or dopamine (DA) loss by genetic elimination of neural DA synthesis. Defective behaviors in this latter model can be ameliorated by feeding the DA precursor L-DOPA, analogous to the treatment paradigm for PD. Secondary complication from L-DOPA treatment in PD patients are associated with ectopic synthesis of DA in serotonin (5-HT)-releasing neurons, leading to DA/5-HT imbalance. Here we examined the neuro-anatomical adaptations resulting from imbalanced DA/5-HT signaling in Drosophila mutants lacking neural DA. We find that, similar to rodent models of PD, lack of DA leads to increased 5-HT levels and arborizations in specific brain regions. Conversely, increased DA levels by L-DOPA feeding leads to reduced connectivity of 5-HT neurons to their target neurons in the mushroom body (MB). The observed alterations of 5-HT neuron plasticity indicate that loss of DA signaling is not solely responsible for the behavioral disorders observed in Drosophila models of PD, but rather a combination of the latter with alterations of 5-HT circuitry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA