Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 79(Pt 4): 330-335, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37427850

RESUMO

Crystalline magnesium stearate has been extensively used as an additive in pharmaceutical and other industries for decades. However, the lack of suitably large crystals has hindered the determination of the crystal structure and thereby a more fundamental understanding of the structure-functionality relationship. Presented here is the structure of magnesium stearate trihydrate as determined from X-ray diffraction data of a micrometre-sized single crystal measured at a fourth-generation synchrotron facility. Despite the small size of the single crystals and the weak diffraction, it was possible to determine the positions of the non-hydrogen atoms reliably. Periodic dispersion-corrected density functional theory calculations were used to obtain the positions of the hydrogen atoms playing an important role in the overall organization of the structure via a hydrogen-bond network.

2.
J Colloid Interface Sci ; 606(Pt 2): 1928-1939, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34695760

RESUMO

Amyloid protein aggregates are not only associated with neurodegenerative diseases and may also occur as unwanted by-products in protein-based therapeutics. Surfactants are often employed to stabilize protein formulations and reduce the risk of aggregation. However, surfactants alter protein-protein interactions and may thus modulate the physicochemical characteristics of any aggregates formed. Human insulin aggregation was induced at low pH in the presence of varying concentrations of the surfactant polysorbate 80. Various spectroscopic and imaging methods were used to study the aggregation kinetics, as well as structure and morphology of the formed aggregates. Molecular dynamics simulations were employed to investigate the initial interaction between the surfactant and insulin. Addition of polysorbate 80 slowed down, but did not prevent, aggregation of insulin. Amyloid spherulites formed under all conditions, with a higher content of intermolecular beta-sheets in the presence of the surfactant above its critical micelle concentration. In addition, a denser packing was observed, leading to a more stable aggregate. Molecular dynamics simulations suggested a tendency for insulin to form dimers in the presence of the surfactant, indicating a change in protein-protein interactions. It is thus shown that surfactants not only alter aggregation kinetics, but also affect physicochemical properties of any aggregates formed.


Assuntos
Amiloide , Polissorbatos , Humanos , Insulina , Micelas , Tensoativos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA