Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Cell Sci ; 132(23)2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31685529

RESUMO

The tripartite motif (TRIM) proteins constitute a family of ubiquitin E3 ligases involved in a multitude of cellular processes, including protein homeostasis and autophagy. TRIM32 is characterized by six protein-protein interaction domains termed NHL, various point mutations in which are associated with limb-girdle-muscular dystrophy 2H (LGMD2H). Here, we show that TRIM32 is an autophagy substrate. Lysosomal degradation of TRIM32 was dependent on ATG7 and blocked by knockout of the five autophagy receptors p62 (also known as SQSTM1), NBR1, NDP52 (also known as CALCOCO2), TAX1BP1 and OPTN, pointing towards degradation by selective autophagy. p62 directed TRIM32 to lysosomal degradation, while TRIM32 mono-ubiquitylated p62 on lysine residues involved in regulation of p62 activity. Loss of TRIM32 impaired p62 sequestration, while reintroduction of TRIM32 facilitated p62 dot formation and its autophagic degradation. A TRIM32LGMD2H disease mutant was unable to undergo autophagic degradation and to mono-ubiquitylate p62, and its reintroduction into the TRIM32-knockout cells did not affect p62 dot formation. In light of the important roles of autophagy and p62 in muscle cell proteostasis, our results point towards impaired TRIM32-mediated regulation of p62 activity as a pathological mechanisms in LGMD2H.


Assuntos
Distrofias Musculares/metabolismo , Proteína Sequestossoma-1/metabolismo , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Autofagia/genética , Autofagia/fisiologia , Células HEK293 , Células HeLa , Humanos , Imunoprecipitação , Distrofias Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Ligação Proteica , Proteína Sequestossoma-1/genética , Fatores de Transcrição/genética , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética
2.
EMBO Rep ; 18(6): 947-961, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28381481

RESUMO

Mitophagy, the selective removal of damaged or excess mitochondria by autophagy, is an important process in cellular homeostasis. The outer mitochondrial membrane (OMM) proteins NIX, BNIP3, FUNDC1, and Bcl2-L13 recruit ATG8 proteins (LC3/GABARAP) to mitochondria during mitophagy. FKBP8 (also known as FKBP38), a unique member of the FK506-binding protein (FKBP) family, is similarly anchored in the OMM and acts as a multifunctional adaptor with anti-apoptotic activity. In a yeast two-hybrid screen, we identified FKBP8 as an ATG8-interacting protein. Here, we map an N-terminal LC3-interacting region (LIR) motif in FKBP8 that binds strongly to LC3A both in vitro and in vivo FKBP8 efficiently recruits lipidated LC3A to damaged mitochondria in a LIR-dependent manner. The mitophagy receptors BNIP3 and NIX in contrast are unable to mediate an efficient recruitment of LC3A even after mitochondrial damage. Co-expression of FKBP8 with LC3A profoundly induces Parkin-independent mitophagy. Strikingly, even when acting as a mitophagy receptor, FKBP8 avoids degradation by escaping from mitochondria. In summary, this study identifies novel roles for FKBP8 and LC3A, which act together to induce mitophagy.


Assuntos
Proteínas Associadas aos Microtúbulos/genética , Mitofagia , Proteínas de Ligação a Tacrolimo/genética , Ubiquitina-Proteína Ligases/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Técnicas do Sistema de Duplo-Híbrido
3.
Mol Cell ; 33(4): 505-16, 2009 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-19250911

RESUMO

Autophagy is a catabolic process where cytosolic cellular components are delivered to the lysosome for degradation. Recent studies have indicated the existence of specific receptors, such as p62, which link ubiquitinated targets to autophagosomal degradation pathways. Here we show that NBR1 (neighbor of BRCA1 gene 1) is an autophagy receptor containing LC3- and ubiquitin (Ub)-binding domains. NBR1 is recruited to Ub-positive protein aggregates and degraded by autophagy depending on an LC3-interacting region (LIR) and LC3 family modifiers. Although NBR1 and p62 interact and form oligomers, they can function independently, as shown by autophagosomal clearance of NBR1 in p62-deficient cells. NBR1 was localized to Ub-positive inclusions in patients with liver dysfunction, and depletion of NBR1 abolished the formation of Ub-positive p62 bodies upon puromycin treatment of cells. We propose that NBR1 and p62 act as receptors for selective autophagosomal degradation of ubiquitinated targets.


Assuntos
Autofagia , Proteínas/metabolismo , Ubiquitina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Microscopia Confocal , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas/análise , Proteína Sequestossoma-1 , Especificidade por Substrato
4.
J Biol Chem ; 290(49): 29361-74, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26468287

RESUMO

FYCO1 (FYVE and coiled-coil protein 1) is a transport adaptor that binds to phosphatidylinositol 3-phosphate, to Rab7, and to LC3 (microtubule-associated protein 1 light chain 3) to mediate transport of late endosomes and autophagosomes along microtubules in the plus end direction. We have previously shown that FYCO1 binds to LC3B via a 19-amino acid sequence containing a putative core LC3-interacting region (LIR) motif. Here, we show that FYCO1 preferentially binds to LC3A and -B. By peptide array-based two-dimensional mutational scans of the binding to LC3B, we found FYCO1 to contain a C-terminally extended LIR domain. We determined the crystal structure of a complex between a 13-amino acid LIR peptide from FYCO1 and LC3B at 1.53 Å resolution. By combining the structural information with mutational analyses, both the basis for the C-terminally extended LIR and the specificity for LC3A/B binding were revealed. FYCO1 contains a 9-amino acid-long F-type LIR motif. In addition to the canonical aromatic residue at position 1 and the hydrophobic residue at position 3, an acidic residue and a hydrophobic residue at positions 8 and 9, respectively, are important for efficient binding to LC3B explaining the C-terminal extension. The specificity for binding to LC3A/B is due to the interaction between Asp(1285) in FYCO1 and His(57) in LC3B. To address the functional significance of the LIR motif of FYCO1, we generated FYCO1 knock-out cells that subsequently were reconstituted with GFP-FYCO1 WT and LIR mutant constructs. Our data show that FYCO1 requires a functional LIR motif to facilitate efficient maturation of autophagosomes under basal conditions, whereas starvation-induced autophagy was unaffected.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fagossomos/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Autofagia , Cristalografia por Raios X , Análise Mutacional de DNA , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Humanos , Microscopia Confocal , Proteínas Associadas aos Microtúbulos/química , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
5.
J Biol Chem ; 287(47): 39275-90, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23043107

RESUMO

Autophagy is a lysosome-dependent degradation system conserved among eukaryotes. The mammalian Atg1 homologues, Unc-51 like kinase (ULK) 1 and 2, are multifunctional proteins with roles in autophagy, neurite outgrowth, and vesicle transport. The mammalian ULK complex involved in autophagy consists of ULK1, ULK2, ATG13, FIP200, and ATG101. We have used pulldown and peptide array overlay assays to study interactions between the ULK complex and six different ATG8 family proteins. Strikingly, in addition to ULK1 and ULK2, ATG13 and FIP200 interacted with human ATG8 proteins, all with strong preference for the GABARAP subfamily. Similarly, yeast and Drosophila Atg1 interacted with their respective Atg8 proteins, demonstrating the evolutionary conservation of the interaction. Use of peptide arrays allowed precise mapping of the functional LIR motifs, and two-dimensional scans of the ULK1 and ATG13 LIR motifs revealed which substitutions that were tolerated. This information, combined with an analysis of known LIR motifs, provides us with a clearer picture of sequence requirements for LIR motifs. In addition to the known requirements of the aromatic and hydrophobic residues of the core motif, we found the interactions to depend strongly on acidic residues surrounding the central core LIR motifs. A preference for either a hydrophobic residue or an acidic residue following the aromatic residue in the LIR motif is also evident. Importantly, the LIR motif is required for starvation-induced association of ULK1 with autophagosomes. Our data suggest that ATG8 proteins act as scaffolds for assembly of the ULK complex at the phagophore.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas dos Microfilamentos/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Motivos de Aminoácidos , Animais , Família da Proteína 8 Relacionada à Autofagia , Drosophila melanogaster , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas dos Microfilamentos/genética , Complexos Multiproteicos/genética , Saccharomyces cerevisiae
6.
J Biol Chem ; 285(8): 5941-53, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20018885

RESUMO

p62, also known as sequestosome1 (SQSTM1), A170, or ZIP, is a multifunctional protein implicated in several signal transduction pathways. p62 is induced by various forms of cellular stress, is degraded by autophagy, and acts as a cargo receptor for autophagic degradation of ubiquitinated targets. It is also suggested to shuttle ubiquitinated proteins for proteasomal degradation. p62 is commonly found in cytosolic protein inclusions in patients with protein aggregopathies, it is up-regulated in several forms of human tumors, and mutations in the gene are linked to classical adult onset Paget disease of the bone. To this end, p62 has generally been considered to be a cytosolic protein, and little attention has been paid to possible nuclear roles of this protein. Here, we present evidence that p62 shuttles continuously between nuclear and cytosolic compartments at a high rate. The protein is also found in nuclear promyelocytic leukemia bodies. We show that p62 contains two nuclear localization signals and a nuclear export signal. Our data suggest that the nucleocytoplasmic shuttling of p62 is modulated by phosphorylations at or near the most important nuclear localization signal, NLS2. The aggregation of p62 in cytosolic bodies also regulates the transport of p62 between the compartments. We found p62 to be essential for accumulation of polyubiquitinated proteins in promyelocytic leukemia bodies upon inhibition of nuclear protein export. Furthermore, p62 contributed to the assembly of proteasome-containing degradative compartments in the vicinity of nuclear aggregates containing polyglutamine-expanded Ataxin1Q84 and to the degradation of Ataxin1Q84.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Corpos de Inclusão Intranuclear/metabolismo , Espaço Intranuclear/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sinais de Localização Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitinação , Transporte Ativo do Núcleo Celular/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Ataxina-1 , Ataxinas , Células HeLa , Humanos , Corpos de Inclusão Intranuclear/genética , Proteínas do Tecido Nervoso/genética , Sinais de Localização Nuclear/genética , Proteínas Nucleares/genética , Peptídeos/genética , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína Sequestossoma-1
7.
J Biol Chem ; 285(29): 22576-91, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20452972

RESUMO

The p62/SQSTM1 (sequestosome 1) protein, which acts as a cargo receptor for autophagic degradation of ubiquitinated targets, is up-regulated by various stressors. Induction of the p62 gene by oxidative stress is mediated by NF-E2-related factor 2 (NRF2) and, at the same time, p62 protein contributes to the activation of NRF2, but hitherto the mechanisms involved were not known. Herein, we have mapped an antioxidant response element (ARE) in the p62 promoter that is responsible for its induction by oxidative stress via NRF2. Chromatin immunoprecipitation and gel mobility-shift assays verified that NRF2 binds to this cis-element in vivo and in vitro. Also, p62 docks directly onto the Kelch-repeat domain of Kelch-like ECH-associated protein 1 (KEAP1), via a motif designated the KEAP1 interacting region (KIR), thereby blocking binding between KEAP1 and NRF2 that leads to ubiquitylation and degradation of the transcription factor. The KIR motif in p62 is located immediately C-terminal to the LC3-interacting region (LIR) and resembles the ETGE motif utilized by NRF2 for its interaction with KEAP1. KIR is required for p62 to stabilize NRF2, and inhibition of KEAP1 by p62 occurs from a cytoplasmic location within the cell. The LIR and KIR motifs cannot be engaged simultaneously by LC3 and KEAP1, but because p62 is polymeric the interaction between KEAP1 and p62 leads to accumulation of KEAP1 in p62 bodies, which is followed by autophagic degradation of KEAP1. Our data explain how p62 contributes to activation of NRF2 target genes in response to oxidative stress through creating a positive feedback loop.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Antioxidantes/metabolismo , Retroalimentação Fisiológica , Proteínas de Choque Térmico/genética , Fator 2 Relacionado a NF-E2/metabolismo , Elementos de Resposta/genética , Transcrição Gênica , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Autofagia , Sequência de Bases , Sítios de Ligação , Ligação Competitiva , Regulação da Expressão Gênica , Células HeLa , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Humanos , Corpos de Inclusão/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteína Sequestossoma-1 , Transdução de Sinais/genética
8.
J Cell Biol ; 171(4): 603-14, 2005 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-16286508

RESUMO

Autophagic degradation of ubiquitinated protein aggregates is important for cell survival, but it is not known how the autophagic machinery recognizes such aggregates. In this study, we report that polymerization of the polyubiquitin-binding protein p62/SQSTM1 yields protein bodies that either reside free in the cytosol and nucleus or occur within autophagosomes and lysosomal structures. Inhibition of autophagy led to an increase in the size and number of p62 bodies and p62 protein levels. The autophagic marker light chain 3 (LC3) colocalized with p62 bodies and co-immunoprecipitated with p62, suggesting that these two proteins participate in the same complexes. The depletion of p62 inhibited recruitment of LC3 to autophagosomes under starvation conditions. Strikingly, p62 and LC3 formed a shell surrounding aggregates of mutant huntingtin. Reduction of p62 protein levels or interference with p62 function significantly increased cell death that was induced by the expression of mutant huntingtin. We suggest that p62 may, via LC3, be involved in linking polyubiquitinated protein aggregates to the autophagy machinery.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Autofagia , Proteínas de Choque Térmico/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Proteínas Nucleares/fisiologia , Proteínas/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Morte Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Movimento Celular , Núcleo Celular/metabolismo , Sobrevivência Celular , Citoplasma/metabolismo , Citosol/metabolismo , Detergentes/farmacologia , Proteínas de Fluorescência Verde/química , Células HeLa , Proteínas de Choque Térmico/metabolismo , Humanos , Proteína Huntingtina , Immunoblotting , Imunoprecipitação , Lisossomos/química , Camundongos , Microscopia Confocal , Microscopia Eletrônica , Microscopia de Vídeo , Proteínas Associadas aos Microtúbulos/fisiologia , Modelos Biológicos , Modelos Genéticos , Mutação , Células NIH 3T3 , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Plasmídeos/metabolismo , Polímeros/química , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas/metabolismo , Proteína Sequestossoma-1 , Transfecção , Ubiquitina/química
9.
Front Genet ; 10: 249, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984240

RESUMO

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder caused by a CGG-repeat expansion in the 5' UTR of the FMR1 gene on the X-chromosome. Both elevated levels of the expanded FMR1 mRNA and aberrant expression of a polyglycine protein (FMRpolyG) from the CGG-repeat region are hypothesized to trigger the pathogenesis of FXTAS. While increased expression of FMRpolyG leads to higher toxicity in FXTAS models, the pathogenic effect of this protein has only been studied in the presence of CGG-containing mRNA. Here we present a model that allows measurement of the effect of FMRpolyG-expression without co-expression of the corresponding CGG mRNA hairpin. This allows direct comparison of the effect of the FMRpolyG protein per se, vs. that of the FMRpolyG protein together with the CGG mRNA hairpin. Our results show that expression of the FMRpolyG, in the absence of any CGG mRNA, is sufficient to cause reduced cell viability, lamin ring disruption and aggregate formation. Furthermore, we found FMRpolyG to be a long-lived protein degraded primarily by the ubiquitin-proteasome-system. Together, our data indicate that accumulation of FMRpolyG protein per se may play a major role in the development of FXTAS.

10.
J Cell Biol ; 188(2): 253-69, 2010 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-20100911

RESUMO

Autophagy is the main eukaryotic degradation pathway for long-lived proteins, protein aggregates, and cytosolic organelles. Although the protein machinery involved in the biogenesis of autophagic vesicles is well described, very little is known about the mechanism of cytosolic transport of autophagosomes. In this study, we have identified an adaptor protein complex, formed by the two autophagic membrane-associated proteins LC3 and Rab7 and the novel FYVE and coiled-coil (CC) domain-containing protein FYCO1, that promotes microtubule (MT) plus end-directed transport of autophagic vesicles. We have characterized the LC3-, Rab7-, and phosphatidylinositol-3-phosphate-binding domains in FYCO1 and mapped part of the CC region essential for MT plus end-directed transport. We also propose a mechanism for selective autophagosomal membrane recruitment of FYCO1.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fatores de Transcrição/metabolismo , Vesículas Transportadoras/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Autofagia/fisiologia , Sítios de Ligação/fisiologia , Transporte Biológico Ativo/fisiologia , Proteínas de Ligação a DNA/genética , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/ultraestrutura , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Fatores de Transcrição/genética , Vesículas Transportadoras/ultraestrutura , Proteínas rab de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
11.
Autophagy ; 6(6): 784-93, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20574168

RESUMO

Macroautophagy (hereafter referred to as autophagy) is a catabolic pathway to isolate and transport cytosolic components to the lysosome for degradation. Recently, autophagy receptors, like p62/SQSTM1 and NBR1, which physically link autophagic cargo to ATG8/MAP1-LC3/GABARAP family members located on the forming autophagic membranes, have been identified. To identify conditions or compounds that affect autophagy, cell systems that efficiently report on autophagic flux are required. Here we describe reporter cell systems based on induced expression of GFPp62, GFP-NBR1 or GFP-LC3B. The degradation of the fusion proteins was followed after promoter shut-off by flow cytometry of live cells. All three fusion proteins were degraded at a basal rate by autophagy. Surprisingly, the basal degradation rate varied for the three reporter fusion proteins. GFP-LC3B was the most stable protein. GFP-NBR1 was most efficiently degraded under basal conditions while degradation of GFP-p62 displayed the strongest response to amino acid starvation. GFP-p62 was found to perform the best of the tested reporters. Single cell analysis of autophagic flux by flow cytometry allows estimates of heterogeneous cell populations. The feasibility of this approach was demonstrated using transient overexpression of a dominant negative ULK1 kinase and siRNA-mediated knockdown of LC3B to inhibit autophagic degradation of GFP-p62. The inducible GFP-p62 cell system allows quantification by several approaches and will be useful in screening for compounds or conditions that affect the rate of autophagy. Inducers of autophagy can be identified using rich medium whereas inhibitors are identified under starvation conditions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Citometria de Fluxo/métodos , Genes Reporter , Linhagem Celular , Proteínas de Fluorescência Verde/metabolismo , Humanos , Regiões Promotoras Genéticas/genética , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/metabolismo , Proteína Sequestossoma-1
12.
Autophagy ; 6(3): 330-44, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20168092

RESUMO

Accumulation of ubiquitinated proteins in cytoplasmic and/or nuclear inclusions is a hallmark of several diseases associated with premature cell death. SQSTM1/p62 is known to bind ubiquitinated substrates and aid their aggregation and degradation by macroautophagy. We show here that p62 is required to recruit the large phosphoinositide-binding protein ALFY to cytoplasmic p62 bodies generated upon amino acid starvation or puromycin-treatment. ALFY, as well as p62, is required for formation and autophagic degradation of cytoplasmic ubiquitin-positive inclusions. Moreover, both p62 and ALFY localize to nuclear promyleocytic leukemia (PML) bodies. The Drosophila p62 homologue Ref(2) P accumulates in ubiquitinated inclusions in the brain of flies carrying mutations in the ALFY homologue Blue cheese, demonstrating that ALFY is required for autophagic degradation of p62-associated ubiquitinated proteins in vivo. We conclude that p62 and ALFY interact to organize misfolded, ubiquitinated proteins into protein bodies that become degraded by autophagy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia/fisiologia , Corpos de Inclusão/metabolismo , Proteínas de Membrana/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas Relacionadas à Autofagia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Inibidores Enzimáticos/metabolismo , Células HeLa , Humanos , Macrolídeos/metabolismo , Proteínas de Membrana/genética , Complexos Multiproteicos/metabolismo , Dobramento de Proteína , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteína Sequestossoma-1 , Fatores de Transcrição/genética , Proteínas Ubiquitinadas/metabolismo
13.
Methods Enzymol ; 452: 181-97, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19200883

RESUMO

The p62 protein, also called sequestosome 1 (SQSTM1), is a ubiquitin-binding scaffold protein that colocalizes with ubiquitinated protein aggregates in many neurodegenerative diseases and proteinopathies of the liver. The protein is able to polymerize via an N-terminal PB1 domain and can interact with ubiquitinated proteins via the C-terminal UBA domain. Also, p62/SQSTM1 binds directly to LC3 and GABARAP family proteins via a specific sequence motif. The protein is itself degraded by autophagy and may serve to link ubiquitinated proteins to the autophagic machinery to enable their degradation in the lysosome. Since p62 accumulates when autophagy is inhibited, and decreased levels can be observed when autophagy is induced, p62 may be used as a marker to study autophagic flux. Here, we present several protocols for monitoring autophagy-mediated degradation of p62 using Western blots, pulse-chase measurement of p62 half-life, immunofluorescence and immuno-electron microscopy, as well as live cell imaging with a pH-sensitive mCherry-GFP double tag. We also present data on species-specificity and map the epitopes recognized by several commercially available anti-p62 antibodies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Western Blotting , Imunofluorescência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia Imunoeletrônica
14.
J Biol Chem ; 282(33): 24131-45, 2007 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-17580304

RESUMO

Protein degradation by basal constitutive autophagy is important to avoid accumulation of polyubiquitinated protein aggregates and development of neurodegenerative diseases. The polyubiquitin-binding protein p62/SQSTM1 is degraded by autophagy. It is found in cellular inclusion bodies together with polyubiquitinated proteins and in cytosolic protein aggregates that accumulate in various chronic, toxic, and degenerative diseases. Here we show for the first time a direct interaction between p62 and the autophagic effector proteins LC3A and -B and the related gamma-aminobutyrate receptor-associated protein and gamma-aminobutyrate receptor-associated-like proteins. The binding is mediated by a 22-residue sequence of p62 containing an evolutionarily conserved motif. To monitor the autophagic sequestration of p62- and LC3-positive bodies, we developed a novel pH-sensitive fluorescent tag consisting of a tandem fusion of the red, acid-insensitive mCherry and the acid-sensitive green fluorescent proteins. This approach revealed that p62- and LC3-positive bodies are degraded in autolysosomes. Strikingly, even rather large p62-positive inclusion bodies (2 microm diameter) become degraded by autophagy. The specific interaction between p62 and LC3, requiring the motif we have mapped, is instrumental in mediating autophagic degradation of the p62-positive bodies. We also demonstrate that the previously reported aggresome-like induced structures containing ubiquitinated proteins in cytosolic bodies are dependent on p62 for their formation. In fact, p62 bodies and these structures are indistinguishable. Taken together, our results clearly suggest that p62 is required both for the formation and the degradation of polyubiquitin-containing bodies by autophagy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Proteínas Associadas aos Microtúbulos/metabolismo , Ubiquitina/metabolismo , Sequência de Aminoácidos , Citosol , Corantes Fluorescentes , Células HeLa , Humanos , Complexos Multiproteicos , Ligação Proteica , RNA Interferente Pequeno/farmacologia , Proteína Sequestossoma-1 , Transfecção
15.
J Biol Chem ; 278(36): 34568-81, 2003 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-12813044

RESUMO

The Phox and Bem1p (PB1) domain constitutes a recently recognized protein-protein interaction domain found in the atypical protein kinase C (aPKC) isoenzymes, lambda/iota- and zeta PKC; members of mitogen-activated protein kinase (MAPK) modules like MEK5, MEKK2, and MEKK3; and in several scaffold proteins involved in cellular signaling. Among the last group, p62 and Par6 (partitioning-defective 6) are involved in coupling the aPKCs to signaling pathways involved in cell survival, growth control, and cell polarity. By mutation analyses and molecular modeling, we have identified critical residues at the interaction surfaces of the PB1 domains of aPKCs and p62. A basic charge cluster interacts with an acidic loop and helix both in p62 oligomerization and in the aPKC-p62 interaction. Subsequently, we determined the abilities of mammalian PB1 domain proteins to form heteromeric and homomeric complexes mediated by this domain. We report several novel interactions within this family. An interaction between the cell polarity scaffold protein Par6 and MEK5 was found. Furthermore, p62 interacts both with MEK5 and NBR1 in addition to the aPKCs. Evidence for involvement of p62 in MEK5-ERK5 signaling is presented.


Assuntos
Proteínas de Transporte/química , Proteínas Imediatamente Precoces/química , Quinases de Proteína Quinase Ativadas por Mitógeno/química , Proteínas/química , Proteínas Adaptadoras de Transdução de Sinal , Motivos de Aminoácidos , Sequência de Aminoácidos , Linhagem Celular , Análise Mutacional de DNA , DNA Complementar/metabolismo , Glutationa Transferase/metabolismo , Proteínas de Fluorescência Verde , Células HeLa , Humanos , Immunoblotting , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Luminescentes/metabolismo , MAP Quinase Quinase 5 , Microscopia de Fluorescência , Modelos Genéticos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Plasmídeos/metabolismo , Testes de Precipitina , Ligação Proteica , Proteína Quinase C/química , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Proteína Sequestossoma-1 , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA