Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Anal Chem ; 94(50): 17662-17669, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36472413

RESUMO

Since peroxide-based explosives (PBEs) lack reactive functional groups, they cannot be determined directly by most detection methods and are often detected indirectly by converting them to H2O2. However, H2O2 may originate from many sources, causing false positives in PBE detection. Here, we developed a novel electrochemical sensor for the direct sensitive and selective determination of PBEs such as triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD) using electrochemical modification of the glassy carbon (GC) electrode with PBE-memory polycarbazole (PCz) films decorated with gold nanoparticles (AuNPs) by cyclic voltammetry (CV). The prepared electrodes were named TATP-memory-GC/PCz/AuNPs (used for TATP determination) and HMTD-memory-GC/PCz/AuNPs (used for HMTD detection). The calibration lines of TATP and HMTD were found in the concentration range of 0.1-1.0 mg L-1 using the net current intensities of differential pulse voltammetry (DPV) versus analyte concentrations. The limit of detection (LOD) commonly found was 15 µg L-1 for TATP and HMTD. The sensor electrodes could separately determine intact TATP and HMTD in the presence of nitro-aromatic, nitramine, and nitrate ester energetic materials. The proposed electrochemical sensing method was not interfered by electroactive substances such as paracetamol, caffeine, acetylsalicylic acid, aspartame, d-glucose, and detergent (containing perborate and percarbonate) used as camouflage materials for PBEs. This is the first molecularly imprinted polymeric electrode for PBEs accomplishing such low LODs, and the DPV method was statistically validated in contaminated clay soil samples against the GC-MS method for TATP and a spectrophotometric method for HMTD using t- and F-tests.


Assuntos
Substâncias Explosivas , Nanopartículas Metálicas , Ouro , Peróxido de Hidrogênio , Substâncias Explosivas/química , Carbono , Peróxidos , Eletrodos
2.
Mikrochim Acta ; 189(4): 167, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35359164

RESUMO

A novel amperometric method is presented for the determination of total antioxidant capacity in flow injection analysis (FIA) system using copper(II)-neocuproine complex modified on Nafion-functionalized multi-walled carbon nanotube-glassy carbon electrode ([Cu(Ncp)22+]/Nf@f-MWCNT/GCE). Cyclic voltammetric studies showed that the modified electrode exhibits a very well-formed reversible redox couple for Cu(II)-/Cu(I)-complex. In addition, the [Cu(Ncp)22+]/[Cu(Ncp)2+] redox pair shows very good electrocatalytic activity towards the oxidation of polyphenolic compounds (PPhCs) such as trolox, catechin, and quercetin due to the enhancement of the anodic peak current of the redox couple in the presence of these analytes. This electrocatalytic oxidation current at the [Cu(Ncp)22+]/Nf@f-MWCNT/GCE was used for flow injection (FI) amperometric determination of PPhCs. FI amperometric-time curves recorded under optimized conditions (applied potential: + 0.6 V vs. Ag/AgCl/KCl(0.10 M), flow rate: 2 mL/min) showed that the proposed electrode had a wide linear range (LR) with a very low detection limit (LOD) for PPhCs. LR and LOD were 0.5-800 and 0.2 µM for trolox, respectively and 0.50-250 and 0.14 µM, respectively, for both quercetin and catechin. This sensitive method was successfully applied to the amperometric measurement of total antioxidant capacity (TAC) of some herbal teas, giving compatible results with the spectrophotometric CUPRAC method. The proposed method gave higher rank to fast-reacting antioxidants; it was equally precise but had a wider linear range and lower LOD than the spectrophotometric CUPRAC assay (e.g., LOD for ascorbic acid and gallic acid were 0.07 and 0.08 µM, respectively), and similar electroanalytical methods using the CUPRAC reagent.


Assuntos
Antioxidantes , Fenantrolinas , Eletrodos , Oxirredução
3.
Anal Chem ; 93(33): 11451-11460, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34425678

RESUMO

The sensitive and selective determination of peroxide-based explosives (PBEs) in the field/on site is an important analytical challenge. Most methods claiming to detect PBEs are indirect, actually detecting their decomposition product, H2O2. Here, we present an electrochemical sensor for direct detection of organic peroxide explosives, that is, triacetone triperoxide (TATP) and hexamethylenetriperoxide diamine (HMTD), using well-dispersed multiwalled carbon nanotubes/polyethyleneimine (MWCNTs/PEI)-modified glassy carbon (GC) electrode, namely, GC/MWCNTs/PEI electrode. This is the first use of the conductive polyelectrolyte PEI as an electrode modifier for pristine PBE sensing. The potential range, scan rate, solvent selection, and supporting electrolyte concentration were optimized for PBEs. As a distinct advantage over other similar methods, our sensor electrode responded to intact TATP solutions in neutral medium, meaning that TATP did not interact with acids/bases that would transform it into H2O2. Calibration curves were linear in the range of 10-200 mg L-1 for TATP and 25-200 mg L-1 for HMTD. Using differential pulse voltammetry, detection limits of 1.5 mg L-1 TATP and 3.0 mg L-1 HMTD were obtained from direct electrochemical reduction in 80/20% (v/v) H2O-acetone solvent medium. Electroactive camouflage materials such as passenger belongings (e.g., sweetener, detergent, sugar, and paracetamol-caffeine-based analgesic drugs), common ions, and other explosives were shown not to interfere with the proposed method. The nonresponsive behavior of our electrode to H2O2 prevents "false positives" from other peroxide materials of everyday use. This electrochemical sensor could also detect other nitro-explosives at different potentials and was statistically validated against standard GC-MS and spectrophotometric methods.


Assuntos
Substâncias Explosivas , Nanotubos de Carbono , Técnicas Eletroquímicas , Eletrodos , Peróxido de Hidrogênio , Peróxidos , Polietilenoimina
4.
Mikrochim Acta ; 188(7): 228, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34115203

RESUMO

A reusable, low-cost, and convenient ethylenediamine (EDA)-bound magnetite nanoparticles (MNPs)-based colorimetric sensor has been developed for dual function colorimetric determination of nitroaromatic explosives such as TNT and tetryl. Colorimetric detection of analytes may occur through two independent routes: (1) nano-Fe3O4- EDA- NH2 as σ-donor may interact with the σ- and π-acceptor aromatic-poly(NO2) groups to produce a colored charge-transfer (CT) complex; (2) nano-Fe3O4-EDA-NH2 as a Fenton-type nanozyme may generate reactive species that comprise hydroxyl radicals (•OH) with H2O2 to oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to a blue-colored diimine (oxTMB-TMB) CT complex, where this color is bleached with TNT/tetryl because of donor-acceptor interactions between the explosive -NO2 groups and the -NH2 group of Fe3O4-EDA nanoparticles of restricted nanozyme activity. Both methods can quantify TNT well below the EPA recommended TNT residential screening level in soil, LOD being in the micromolar range. As EDA was covalently bound to MNPs, the same sensor can be separately reused six times for TNT and eight times for tetryl determination, using method (1). Common metal ions, anions, energetic materials, several camouflage materials, and soil components such as humates did not interfere with the nanosensor performance for TNT and tetryl. The combination of charge-transfer and nanozyme ability of Fe3O4- EDA-NH2 nanoparticles may bring a new approach to dual function colorimetric sensor design. To the best of our knowledge, this is the first dual function colorimetric sensor for TNT and tetryl using the same nanoparticles as sensing elements in two different detection systems involving either formation or bleaching of colored species. The proposed colorimetric sensor can determine nitroaromatic explosives in two different ways: method-1 for TNT and tetryl sensing with EDA-MNPs relies on the donor-acceptor interaction between the electron-deficient nitroaromatics and electron-rich amine groups covalently functionalized on MNPs to produce an absorbance at 512 nm. In method-2, EDA-MNPs having nanozyme activity react with H2O2 to form reactive species that can oxidize TMB to its blue-colored charge-transfer (CT) complex, where TNT and tetryl addition may partially inhibit the nanozyme activity of EDA-MNPs and cause color bleaching (decrement of 650 nm absorbance) by disrupting the CT complex formed from TMB. This is the first dual function colorimetric sensor for nitro explosives uniquely combining charge-transfer and nanozyme ability of EDA-Fe3O4 nanoparticles in the same nano-sensor.

5.
Mikrochim Acta ; 187(10): 586, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32997192

RESUMO

As a first of its kind, we developed a highly sensitive colorimetric nanoprobe for phytic acid (PA) and Fe(III) ion detection based on 4-mercaptophenol (4MP) and thioglycolic acid (TGA)-functionalized gold nanoparticles {AuNPs@(4MP-TGA)}. AuNPs were easily derivatized by 4MP and TGA through -SH binding to gold. Fe(III) ions possibly are bound first to the phenolate groups of 4MP-AuNPs, and further coordinated several nanoparticles via the carboxylate groups of TGA-AuNPs to cause aggregation, resulting in a red-to-purple color change and a bathochromic shift in the SPR absorption band of the nanoprobe. With the addition of PA to the AuNPs@(4MP-TGA)-Fe(III) system, the aggregated particles were released due to strong complex formation between Fe(III) and PA, resulting in a restoration of the color (purple-to-red) and of the SPR band to the original 520 nm wavelength maximum. Thus, the 650-nm absorption is attenuated and the 520-nm band is enhanced upon PA-Fe(III) chelation. This means that the absorption ratio A650/A520 is an indication of Fe(III) whereas the reverse ratio A520/A650 of the PA content of complex samples. The limits of detection (LOD) of the AuNPs@(4MP-TGA) were 1.0 µM for Fe(III) ions and 0.15 µM for PA. Phytic acid extracted from bean grains was determined with the proposed probe, yielding good recoveries. In addition, common metal ions, anions, and several biomolecules did not show an adverse effect on the nanoprobe performance for ferric ions and phytate. The developed method was statistically validated against a LC-MS/MS literature method. Graphical abstract Mercaptophenolate (4MP)- and thioglycolic acid (TGA)-functionalized gold nanoparticles were prepared as nanoprobes to detect Fe(III) ions through nanoparticle aggregation accompanied by red-to-purple color shift. The same nanoprobe determined phytic acid in food through disaggregation of Fe(III)-aggregated nanoparticles by strong Fe(III)-phytate chelation and restoration of solution color from purple to red.

6.
Anal Chem ; 90(12): 7364-7370, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29786423

RESUMO

Since nitroaromatic- and nitramine-type energetic materials, mostly arising from military activities, are persistent pollutants in soil and groundwater, on-site sensing of these hazardous chemicals has gained importance. A novel electrochemical sensor was designed for detecting nitroaromatic- and nitramine-type energetic materials, relying on gold nanoparticles (Aunano), modified glassy carbon (GC) electrode coated with nitro-energetic memory-poly(carbazole-aniline) copolymer (Cz- co-ANI) film (e.g., TNT memory-GC/P(Cz- co-ANI)-Aunano modified electrode). Current was recorded against concentration to build the calibration curves that were found to be linear within the range of 100-1000 µg L-1 for 2,4,6-trinitrotoluene (TNT) and 2,4-dinitrotoluene (DNT): 50-1000 µg L-1 for 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). The corresponding limits of detection were 25 µg L-1 for TNT, 30 µg L-1 for DNT, and 10 µg L-1 for both RDX and HMX, using nitro-energetic memory-GC/P(Cz- co-ANI)-Aunano electrodes. These electrodes were used separately, and specific determinations were made in various mixtures of nitro-energetic materials. The developed method could be efficiently used in electroanalyzing nitroaromatics and nitramines in military explosives (i.e., comp B, octol, and comp A5). The sensor electrodes were specific for the tested nitro-energetic compounds and did not respond to paracetamol-caffeine-based analgesic drug, acetylsalicylic acid (aspirin), sweetener, and sugar that can be used as camouflage materials in passenger belongings. The developed method was statistically validated against the standard LC-MS reference method in contaminated clay soil samples containing TNT and RDX explosives.


Assuntos
Compostos de Anilina/análise , Substâncias Explosivas/análise , Hidrocarbonetos Aromáticos/análise , Nitrobenzenos/análise , Azocinas/análise , Dinitrobenzenos/análise , Técnicas Eletroquímicas , Eletrodos , Impressão Molecular/métodos , Triazinas/análise , Trinitrotolueno/análise
7.
Sensors (Basel) ; 18(1)2018 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-29324685

RESUMO

Since an unbalanced excess of reactive oxygen/nitrogen species (ROS/RNS) causes various diseases, determination of antioxidants that can counter oxidative stress is important in food and biological analyses. Optical/electrochemical nanosensors have attracted attention in antioxidant activity (AOA) assessment because of their increased sensitivity and selectivity. Optical sensors offer advantages such as low cost, flexibility, remote control, speed, miniaturization and on-site/in situ analysis. Electrochemical sensors using noble metal nanoparticles on modified electrodes better catalyze bioelectrochemical reactions. We summarize the design principles of colorimetric sensors and nanoprobes for food antioxidants (including electron-transfer based and ROS/RNS scavenging assays) and important milestones contributed by our laboratory. We present novel sensors and nanoprobes together with their mechanisms and analytical performances. Our colorimetric sensors for AOA measurement made use of cupric-neocuproine and ferric-phenanthroline complexes immobilized on a Nafion membrane. We recently designed an optical oxidant/antioxidant sensor using N,N-dimethyl-p-phenylene diamine (DMPD) as probe, from which ROS produced colored DMPD-quinone cationic radicals electrostatically retained on a Nafion membrane. The attenuation of initial color by antioxidants enabled indirect AOA estimation. The surface plasmon resonance absorption of silver nanoparticles as a result of enlargement of citrate-reduced seed particles by antioxidant addition enabled a linear response of AOA. We determined biothiols with Ellman reagent-derivatized gold nanoparticles.


Assuntos
Microscopia Eletroquímica de Varredura , Antioxidantes , Análise de Alimentos , Ouro , Nanopartículas Metálicas , Nanoestruturas , Oxirredução , Prata , Espectrofotometria
9.
Int J Mol Sci ; 17(8)2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27490543

RESUMO

Due to the negative impact of nitrate and nitrite on human health, their presence exceeding acceptable levels is not desired in foodstuffs. Thus, nitrite determination at low concentrations is a major challenge in electroanalytical chemistry, which can be achieved by fast, cheap, and safe electrochemical sensors. In this work, the working electrode (Au) was functionalized with p-aminothiophenol (p-ATP) and modified with gold nanoparticles (Au-NPs) to manufacture the final (Au/p-ATP-Aunano) electrode in a two-step procedure. In the first step, p-ATP was electropolymerized on the electrode surface to obtain a polyaminothiophenol (PATP) coating. In the second step, Au/p-ATP-Aunano working electrode was prepared by coating the surface with the use of HAuCl4 solution and cyclic voltammetry. Determination of aqueous nitrite samples was performed with the proposed electrode (Au/p-ATP-Aunano) using square wave voltammetry (SWV) in pH 4 buffer medium. Characteristic peak potential of nitrite samples was 0.76 V, and linear calibration curves of current intensity versus concentration was linear in the range of 0.5-50 mg·L(-1) nitrite with a limit of detection (LOD) of 0.12 mg·L(-1). Alternatively, nitrite in sausage samples could be colorimetrically determined with high sensitivity by means of p-ATP‒modified gold nanoparticles (AuNPs) and naphthylethylene diamine as coupling agents for azo-dye formation due to enhanced charge-transfer interactions with the AuNPs surface. The slopes of the calibration lines in pure NO2(-) solution and in sausage sample solution, to which different concentrations of NO2(-) standards were added, were not significantly different from each other, confirming the robustness and interference tolerance of the method. The proposed voltammetric sensing method was validated against the colorimetric nanosensing method in sausage samples.


Assuntos
Compostos de Anilina/química , Eletroquímica/métodos , Conservantes de Alimentos/análise , Ouro/química , Nanopartículas Metálicas/química , Nitritos/análise , Compostos de Sulfidrila/química , Técnicas Biossensoriais , Colorimetria , Espectroscopia Dielétrica , Eletrodos , Microscopia Eletrônica de Varredura , Polimerização , Polímeros/química
10.
Anal Chem ; 87(19): 9589-94, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26356315

RESUMO

The explosive triacetone triperoxide (TATP) can be easily manufactured from readily accessible reagents and is extremely difficult to detect, owing to the lack of UV absorbance, fluorescence, or facile ionization. The developed method is based on the acidic hydrolysis of TATP into H2O2, pH adjustment to 3.6, and the addition of magnetite nanoparticles (Fe3O4 MNPs) to the medium to produce hydroxyl radicals from H2O2, owing to the peroxidase-like activity of MNPs. The formed radicals converted the N,N-dimethyl-p-phenylenediamine (DMPD) probe to the colored DMPD(+) radical cation, the optical absorbance of which was measured at a wavelength of 554 nm. The molar absorptivity (ε) of the method for TATP was 21.06 × 10(3) L mol(-1) cm(-1). The colored DMPD(+) product in solution could be completely retained on a cation-exchanger Nafion membrane, constituting a colorimetric sensor for TATP and increasing the analytical sensitivity. The proposed method did not respond to a number of hand luggage items like detergent, sweetener, sugar, acetylsalicylic acid (aspirin), and paracetamol-caffeine-based analgesic drugs. On the other hand, TATP could be almost quantitatively recovered from a household detergent and sweetener that can be used as camouflage for the analyte. Neither common soil and groundwater ions (e.g., Ca(2+), Mg(2+), K(+), Cl(-), SO4(2-), and NO3(-)) at 100-fold ratios nor nitro-explosives of trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and pentaerythritol tetranitrate (PETN) at 10-fold amounts interfered with the proposed assay. The method was statistically validated against the standard GC/MS reference method.

11.
Anal Chem ; 86(1): 351-6, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24299426

RESUMO

The heterocyclic nitramine compounds, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), are two most important military-purpose high explosives. Differentiation of RDX and HMX with colorimetric methods of determination has not yet been made because of their similar chemical structures. In this study, a sensitive colorimetric method for the determination of RDX and HMX was proposed on the basis of differential kinetics in the hydrolysis of the two compounds (yielding nitrite as a product) followed by their colorimetric determination using 4-aminothiophenol (4-ATP) modified gold nanoparticles (AuNPs) and naphthylethylene diamine (NED) as coupling agent for azo-dye formation, abbreviated as "4-ATP-AuNP+NED" colorimetric method. After alkaline hydrolysis in a 1 M Na2CO3 + 0.04 M NaOH mixture solution at room temperature, only RDX (but not HMX) was hydrolyzed to give a sufficient colorimetric response in neutralized solution, the molar absorptivity (ε) at 565 nm and the limit of detection (LOD) for RDX being (17.6 ± 1.3) × 10(3) L mol(-1) cm(-1) and 0.55 µg mL(-1), respectively. On the other hand, hot water bath (at 60 °C) hydrolysis enabled both nitramines, RDX and HMX, to give substantial colorimetric responses; i.e., ε and LOD for RDX were (32.8 ± 0.5) × 10(3) L mol(-1)cm(-1) and 0.20 µg mL(-1) and for HMX were (37.1 ± 2.8) × 10(3) L mol(-1)cm(-1) and 0.24 µg mL(-1), respectively. Unlike other AuNP-based nitrite sensors in the literature showing absorbance quenching within a relatively narrow concentration range, the developed sensor operated with an absorbance increase over a wide range of nitrite. Synthetic mixtures of (RDX + HMX) gave additive responses, and the proposed method was statistically validated against HPLC using nitramine mixtures.

12.
Talanta ; 260: 124585, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37119798

RESUMO

A colorimetric assay is proposed for the quantification of nitroguanidine (NQ), based on triggering the aggregation of uric acid-modified gold nanoparticles (AuNPs@UA) by intermolecular hydrogen bonding interaction between uric acid (UA) and NQ. The red-to-purplish blue (lavender) color change of AuNPs@UA with increasing NQ concentrations could be perceived with the naked eye or detected by UV-vis spectrophotometry. The absorbance versus concentration correlation gave a linear calibration curve in the range of 0.6-3.2 mg L-1 NQ, with a correlation coefficient of 0.9995. The detection limit of the developed method was 0.063 mg L-1, lower than those of noble metal aggregation methods in the literature. The synthesized and modified AuNPs were characterized using UV-vis spectrophotometry, scanning transmission electron microscopy (STEM), dynamic light scattering (DLS), and Fourier transform infrared spectroscopy (FTIR). Some critical parameters such as modification conditions of AuNPs, UA concentration, solvent environment, pH, and reaction time were optimized for the proposed method. The non-interference of common explosives (i.e., nitroaromatic, nitramine, nitrate ester, insensitive and inorganic explosives), common soil and groundwater ions (Na+, K+, Ca2+, Mg2+, Cu2+, Fe2+, Fe3+, Cl-, NO3-, SO42-, CO32-, PO43-) and possible interfering compounds (used as camouflage agents for explosives; D-(+)-glucose, sweeteners, acetylsalicylic acid (aspirin), household powder detergents, and paracetamol) on the proposed method was demonstrated, proving that the procedure was fairly selective for NQ, due to special hydrogen bonding interactions between UA-functionalized AuNPs and NQ. Finally, the proposed spectrophotometric method was applied to NQ-contaminated soil, and the obtained results were statistically compared with those of the liquid chromatography-tandem mass spectrometric (LC-MS/MS) method in the literature.

13.
ACS Appl Mater Interfaces ; 15(35): 42066-42079, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37611222

RESUMO

Oxygen- and nitrogen-heteroatom-doped, water-dispersible, and bright blue-fluorescent carbon dots (ON-CDs) were prepared for the selective and sensitive determination of 2,4,6-trinitrophenol (picric acid, PA). ON-CDs with 49.7% quantum yield were one-pot manufactured by the reflux method using citric acid, d-glucose, and ethylenediamine precursors. The surface morphology of ON-CDs was determined by scanning transmission electron microscopy, high-resolution transmission electron microscopy, dynamic light scattering, Raman, infrared, and X-ray photoelectron spectroscopy techniques, and their photophysical properties were estimated by fluorescence spectroscopy, UV-vis spectroscopy, fluorescence lifetime measurement, and 3D-fluorescence excitation-emission matrix analysis. ON-CDs at an average particle size of 3.0 nm had excitation/emission wavelengths of 355 and 455 nm, respectively. With the dominant inner-filter effect- and hydrogen-bonding interaction-based static fluorescence quenching phenomena supported by ground-state charge-transfer complexation (CTC), the fluorescence of ON-CDs was selectively quenched with PA in the presence of various types of explosives (i.e., 2,4,6-trinitrotoluene, tetryl, 1,3,5-trinitroperhydro-1,3,5-triazine, 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane, pentaerythritol tetranitrate, 3-nitro-1,2,4-triazole-5-one, and TATP-hydrolyzed H2O2). The analytical results showed that the emission intensity varied linearly with a correlation coefficient of 0.9987 over a PA concentration range from 1.0 × 10-9 to 11.0 × 10-9 M. As a result of ground-state interaction (H-bonding and CTC) of ON-CDs with PA, an orange-colored complex was formed different from the characteristic yellow color of PA in an aqueous medium, allowing naked-eye detection of PA. The detection limits for PA with ON-CDs were 12.5 × 10-12 M (12.5 pM) by emission measurement and 9.0 × 10-10 M (0.9 nM) by absorption measurement. In the presence of synthetic explosive mixtures, common soil cations/anions, and camouflage materials, PA was recovered in the range of 95.2 and 102.5%. The developed method was statistically validated against a reference liquid chromatography coupled to tandem mass spectrometry method applied to PA-contaminated soil. In addition, a poly(vinyl alcohol)-based polymer composite film {PF(ON-CDs)} was prepared by incorporating ON-CDs, enabling the smartphone-assisted fluorometric detection of PA.

14.
ACS Omega ; 8(49): 47163-47172, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38107897

RESUMO

This study describes a novel optical glucose biosensor based on a colorimetric reaction between reduced nicotinamide adenine dinucleotide (NADH) and a copper(II) neocuproine complex ([Cu(Nc)2]2+) as a chromogenic oxidant. An enzymatic reaction takes place between glucose and glucose dehydrogenase (GDH)-chitosan (CS) immobilized on silanized magnetite nanoparticles (CS@SiO2@Fe3O4) in the presence of coenzyme NAD+. The oxidation of glucose to gluconolactone via the immobilized enzyme is coupled with the reduction of NAD+ to NADH at the same time. After the separation of GDH-immobilized SiO2@Fe3O4 with a magnet, the enzymatically produced NADH chemically reduces the chromogenic oxidant cupric neocuproine to the cuprous chelate. Thus, the glucose biosensor is fabricated based on the measurement of the absorbance of the formed yellow-orange complex ([Cu(Nc)2]+) at 450 nm. The obtained results show that the colorimetric biosensor has a wide linear response range for glucose, between 1.0 and 150.0 µM under optimized conditions. The limit of detection and limit of quantification were found to be 0.31 and 1.02 µM, respectively. The selectivity properties of the fabricated biosensor were tested with various interfering species. This biosensor was applied to various samples, and the obtained results suggest that the fabricated optical biosensor can be successfully used for the selective and sensitive determination of glucose in real samples.

15.
ACS Omega ; 7(49): 45432-45442, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36530298

RESUMO

In this study, we applied an innovative approach of green analytical chemistry to develop a novel and eco-friendly chromogenic agent for fluoride determination by making use of the nontoxic Al(III)-flavonoid complex in a natural extract from St. John's wort plant. The initial intensely yellow-colored Al(III)-flavonoid complex formed in the plant extract was converted to a colorless AlF6 3- complex with increasing amounts of fluoride, and color bleaching of the Al-flavonoid chromophore (measured as absorbance decrement) was proportional to fluoride concentration. The developed method gave a linear response within the F- concentration range of 0.11-1.32 mM with the LOD and LOQ values of 0.026 mM (0.5 mg L-1) and 0.079 mM (1.5 mg L-1), respectively. The LOD value for fluoride was below the WHO-permissible limit (1.5 mg L-1) and the US-EPA-enforceable limit (4 mg L-1) in water. The possible interference effects of common anions (Cl-, Br-, I-, NO3 -, HCO3 -, SO4 2-, and PO4 3-) and cations (K+, NH4 +, Ag+, Ca2+, Mg2+, Mn2+, Fe2+, and Fe3+) were investigated; the observed interferences from Fe2+, Fe3+, and PO4 3- were easily eliminated by masking iron with the necessary amount of Na2EDTA without affecting the blank absorbance of the Al(III)-flavonoid complex, precipitating phosphate with Ag(I) salt, and partly neutralizing alkaline water samples to pH 4 with acetic acid. The developed method was applied to real water samples and also validated against a reference spectroscopic method at the 95% confidence level.

16.
Talanta ; 238(Pt 1): 122990, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34857323

RESUMO

The on site/in field detection of explosives has become a rising priority for homeland security and counter-terrorism measures. This work presents the sensitive detection of nitroaromatic explosives using glassy carbon/multi-walled carbon nanotubes/polyethyleneimine (GC/MWCNTs/PEI) electrode coated with gold nanoparticles (AuNPs). MWCNTs and PEI could be well dispersed in ethanol/water solution, giving rise to a thin and homogeneous film on GCE. The GC/MWCNTs/PEI electrode was electrochemically modified with AuNPs and used for the differential pulse voltammetric (DPV) detection of nitroaromatics. The enhanced detection sensitivities were achieved through π-π and charge-transfer (CT) interactions between the electron-deficient nitroaromatic explosives and donor amine groups in PEI to which gold nanoparticles were linked, providing increased analyte affinity toward the modified GCE. Calibration curves of current intensity versus concentration were linear in the range of 0.05-8 mg L-1 for TNT, 0.2-4 mg L-1 for 2,4-dinitrotoluene (DNT), 1-20 mg L-1 for 2,4-dinitrophenol (2,4-DNP), 0.25-10 mg L-1 for picric acid (PA), and 0.05-4 mg L-1 for 2,4,6-trinitrophenyl-N-methylnitramine (tetryl) with detection limits (LOD) of 15 µg L-1, 45 µg L-1, 135 µg L-1, 30 µg L-1, and 12 µg L-1, respectively. The proposed method was successfully applied to the analysis of nitroaromatics in synthetic explosive mixtures and military composite explosives (comp B and octol). The electrochemical method was not affected by possible interferents of electroactive camouflage materials and common soil ions. Method validation was performed against the reference LC-MS method on TNT and PA-contaminated clay soil samples separately.


Assuntos
Substâncias Explosivas , Nanopartículas Metálicas , Nanotubos de Carbono , Técnicas Eletroquímicas , Eletrodos , Ouro , Polietilenoimina
17.
Talanta ; 238(Pt 1): 122993, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34857326

RESUMO

Although reactive nitrogen species (RNS) may attack biomacromolecules and cause tissue damage when unbalanced by natural antioxidant defenses of the organism, they can also take part in cell signaling under different physiological states and defend against certain pathogens. Since there is a scarcity of analytical methods to detect radicalic NO and its scavengers, a functionalized gold nanoparticle-based spectrophotometric method and a spectrofluorometric method have been separately developed to test antioxidant activity toward scavenging of NO produced from sodium nitroprusside (SNP). The spectrophotometric method involves conversion of NO to nitrite, followed by the formation of an azo dye with 4-aminothiophenol (4-ATP)-modified gold nanoparticles (AuNPs) and N-(1-naphthyl)-ethylene diamine dichloride (NED) and its absorbance measurement at 565 nm. Calibration equations were established by taking the absorbance difference in the presence and absence of antioxidants. In the spectrofluorometric method, the excess of NO radicals, after being scavenged by thiol type antioxidants, caused a decrease in resorcinol fluorescence. The developed spectrophotometric method was applied to orange juice and its trolox equivalent (TE) antioxidant activity was found. By further applying the developed methods to real samples such as bovine serum albumin (BSA), fetal bovine serum (FBS), saliva and certain biomolecules, it is envisaged that these novel methods improving the selectivity of previous methods can be useful in human health and disease research associated with nitric oxide. The developed methods were compared and validated against the conventional Griess assay with Student t-test and F tests.


Assuntos
Antioxidantes , Nanopartículas Metálicas , Sequestradores de Radicais Livres , Ouro , Humanos , Óxido Nítrico , Espectrofotometria
18.
ACS Omega ; 7(32): 28065-28075, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35990460

RESUMO

A rapid and convenient nanoparticle(NP)-based colorimetric sensor was developed for determining the propellant oxidant, ammonium perchlorate (AP). The sensing element was manufactured by modifying gold nanoparticles (AuNPs) with [(1-methyl-1H-imidazol-2-yl)sulfanyl]acetic acid, which is an imidazolium-based ionic liquid (IL), to produce the IL@AuNP nanosensor stabilized by polyvinylpyrrolidone. The used IL is an exceptional IL which can attach to AuNPs through the sulfanyl-S atom. The sensing principle was based on observing the red shift in the surface plasmon resonance band of AuNPs leading to NP aggregation as a result of anion-π interaction of perchlorate anion with the zwitterionic form of IL@AuNPs so as to bring opposite charges face-to-face, thereby reducing the overall surface charge of NPs. The surface plasmon resonance band of AuNPs at 540 nm shifted to 700 nm as a result of aggregation. The ratiometric sensing was performed by dividing the absorbance at 700 nm to the absorbance at 540 nm and correlating this ratio to the AP concentration. The limit of detection and limit of quantification of the sensor for AP were 1.50 and 4.95 µM, respectively. Possible interferences of other energetic substances and common soil ions in synthetic mixtures were also investigated to achieve acceptable recoveries of analyte. This work may pioneer similar sensing systems where the overall anionic charges of IL-functionalized AuNPs are exceptionally reduced by an analyte anion (perchlorate), thereby forcing NPs to aggregate.

19.
Talanta ; 226: 122187, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33676718

RESUMO

Ammonium dinitramide (ADN) is a strong, environmentally friendly oxidizer used in composite solid rocket propellants. As there is no reliable colorimetric sensor for ADN assay applicable to in-field screening, we developed a sensitive and practical sensing method to determine it in the presence of other explosives and possible interferents, based on the detection of nitrite formed from ADN degradation under UV light in a slightly alkaline (i.e. of lower alkalinity than needed to hydrolyze nitramines) solution by a nanoparticle-based colorimetric sensor. The ADN-derived nitrite formed a colored product via a Griess reaction using gold nanoparticles modified with 4-aminothiophenol (4-ATP-AuNPs) along with a coupling reagent N-(1-naphthyl)ethylene diamine (NED) for forming an azo dye. The method used for ADN detection could also be applied to tetryl samples at a different wavelength. The limit of detection (LOD) was 0.012 mg L-1 for ADN and 0.615 mg L-1 for tetryl. Interference effects of energetic materials like trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and pentaerythritol tetranitrate (PETN) to ADN determination could be overcome. In addition, common soil ions did not adversely affect the nanosensor performance. The developed method was statistically validated against reference voltammetric, UV, and HPLC methods using t- and F- tests.

20.
Analyst ; 135(8): 2085-91, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20532268

RESUMO

The two members of peroxide-based explosives, triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD), can be manufactured from readily accessible reagents, and are difficult to detect by conventional analytical methods. TATP and HMTD were securely synthesized, taken up with acetone, hydrolyzed with 4 M HCl to hydrogen peroxide, the acidic solution containing H(2)O(2) was neutralized, and assayed by the copper(II)-neocuproine spectrophotometric method. The chromophore of the reaction was the Cu(I)-neocuproine chelate responsible for light absorption at 454 nm. The molar absorptivity (epsilon) of the method for TATP and HMTD was 3.45 x 10(4) and 4.68 x 10(4) L mol(-1) cm(-1), respectively. The TATP recovery from a synthetically contaminated loamy clay soil was 91-99%. The colorimetric method was also applied to a Cu(ii)-neocuproine-impregnated polymeric Nafion membrane sensor developed for the first time in this work for peroxide explosive assay. The absorbance-concentration response was perfectly linear, and the limit of detection (LOD) of the procedure for both TATP and HMTD was approximately 0.2 mg L(-1). Neither common soil ions (Ca(2+), K(+), Cl(-), SO(4)(2-), Mg(2+) and NO(3)(-)) at 100-fold amounts nor military-purpose nitro-explosives of TNT, RDX, and PETN at 10-fold amounts interfered with the proposed assay. Active oxygen constituents of laundry detergents (perborates and percarbonates), which normally interfered with the assay, could easily be separated from the analytes by solubility differences. The method was statistically validated against standard reference methods of TiOSO(4) colorimetry and GC-MS.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/análise , Cobre/química , Compostos Heterocíclicos com 1 Anel/análise , Peróxidos/análise , Fenantrolinas/química , Colorimetria , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA