Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 31(27): 275205, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32224509

RESUMO

Chirality, which has long been known as an intrinsic property of living organisms, has caught the interest of researchers due to the rapid emergence of chiral metamaterials. The chiroptical response of noble metal nanostructures in visible and near-infrared regions has been widely investigated. Herein, we propose a bilayer Ag metastructure, in which a chiral L-shaped nanostructure at the bottom is coupled with an achiral nanorod acquiring different positions in the top layer with respect to the long and/or short arm of the chiral L-shaped nanostructure at the bottom layer. The metastructure generates a giant circular dichroism (CD) signal resulting from the strong coupling of the multipolar and dipolar resonant modes on the two layers, in the visible and near-infrared regions. With changing the position of the achiral nanorod, an unusual reversal of the CD spectra is observed, along with a fourfold increase in CD intensity in the short wavelength range due to the multipolar resonant modes. The position of the achiral nanorod is tailored by the azimuthal angle of the substrate during the fabrication of the metastructure using the oblique angle deposition method. This study provides insights into the variation of the coupling strength between a chiral L-shaped nanostructure and an achiral nanorod. The results can be useful in designing chiral-achiral composite nanoantennas for sensing devices.

2.
Appl Opt ; 58(22): 5936-5941, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31503909

RESUMO

Circular dichroism (CD) of metasurfaces has been used in biological monitoring, analytical chemistry, and perfect polarization converters. In this work, a metasurface consisting of nanoholes and tilted nanorods is proposed to achieve the CD effect. Numerical calculations show that electrical current forms between the film and the tilted nanorods under circularly polarized light illumination, and CD effects originate from the coupling between the current oscillations at the film and those on the tilted nanorods. This electrical oscillation mode provides unique coupling mechanisms for the CD effect. In addition, CD is strongly dependent on the structural parameters, and the resonant modes can be tuned by modulating the currents on the film. These results are helpful for designing novel chiral optical structures and provide unique methods for circular polarizers.

3.
Opt Express ; 26(2): 1199-1205, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29401996

RESUMO

Asymmetric transmission (AT) holds significant applications in controlling polarization and propagation directions of electromagnetic waves. In this paper, tilted rectangular nanohole (TRNH) arrays in a square lattice are proposed to realize an AT effect. Numerical results show two AT modes in the transmission spectrum, and they are ascribed to the localized surface plasmon resonances around the two ends of TRNH and surface plasmon polaritons on the golden film. AT properties of the TRNH strongly depend on structural parameters, such as width, length, thickness, and tilted angle of TRNH. Results provide a novel mechanism for generating AT effect and offer potential plasmonic device applications, such as asymmetric wave splitters and optical isolators.

4.
J Phys Condens Matter ; 30(11): 114001, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29400659

RESUMO

Asymmetric transmission (AT) is widely used in polarization transformers and polarization-controlled devices. In this paper, a planar metamaterial nanostructure with connected gammadion-shaped nanostructure (CGN) is proposed to achieve AT effect for forward and backward propagations of circular polarized light. The CGN arrays can produce magnetic moment oscillation that is normal to the metamaterial plane, which is weakly coupled to free space and generates transmission valleys. The introduction of symmetry breaking exerts a strong influence on the AT effects, and these effects can be tuned by the structural parameters. Our planar metamaterials may have potential for application in the future design of polarization-controlling devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA