Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Cell Int ; 21(1): 270, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34020642

RESUMO

Artificial intelligence (AI) is the use of mathematical algorithms to mimic human cognitive abilities and to address difficult healthcare challenges including complex biological abnormalities like cancer. The exponential growth of AI in the last decade is evidenced to be the potential platform for optimal decision-making by super-intelligence, where the human mind is limited to process huge data in a narrow time range. Cancer is a complex and multifaced disorder with thousands of genetic and epigenetic variations. AI-based algorithms hold great promise to pave the way to identify these genetic mutations and aberrant protein interactions at a very early stage. Modern biomedical research is also focused to bring AI technology to the clinics safely and ethically. AI-based assistance to pathologists and physicians could be the great leap forward towards prediction for disease risk, diagnosis, prognosis, and treatments. Clinical applications of AI and Machine Learning (ML) in cancer diagnosis and treatment are the future of medical guidance towards faster mapping of a new treatment for every individual. By using AI base system approach, researchers can collaborate in real-time and share knowledge digitally to potentially heal millions. In this review, we focused to present game-changing technology of the future in clinics, by connecting biology with Artificial Intelligence and explain how AI-based assistance help oncologist for precise treatment.

2.
Entropy (Basel) ; 21(5)2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-33267243

RESUMO

The core objective of the present study is to examine entropy generation minimization via Hall current and Ohmic heating. Carreau fluid considerations interpret the unavailability of systems' thermal energy (for mechanical work). The magneto hydrodynamic flow is in the channel, which is not symmetric. We have solved analytically the resulting nonlinear mathematical model. Moreover, physical exploration of important parameters on total entropy generation, temperature, and Bejan number is plotted and discussed. We observed that the generation of entropy takes place throughout the confined flow field y = W1 and y = W2 because of the viscous dissipation effect. In addition, reducing the operating temperature minimizes the entropy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA