RESUMO
Relative efficacy of five common weeds-of the kind that are either rooted in soil or which freely float over water-was assessed in rapid, effective and sustainable treatment of sewage at pilot plant scale in the recently developed and patented SHEFROL® bioreactors. The plants were utilized in a unit of capacity 12,000 liters/day (LPD) which, after two years of use, was enlarged to handle 40,000 LPD of sewage. It was then further expanded after an year to treat 57,000 LPD. All the five weeds, of which none has previously been tested in a pilot-scale SHEFROL, were able to foster highly efficient primary treatment (in terms of suspended and total solids) and secondary treatment (in terms of BOD and COD) to levels exceeding 85% in most cases. Additionally, the weeds also helped in achieving significant tertiary treatment. At different hydraulic retention times, and at steady state, the five weeds achieved treatment of BOD, COD, suspended solids, nitrogen, phosphorous, copper, nickel, zinc, and manganese in the ranges, 80-95, 79-91, 82-95, 61-71, 51-73, 37-43, 30-38, 39-47, and 27-35%, respectively. It all occurred in a single process step and without the use of any machine or chemical. This made the system not only simple and inexpensive to install but also to maintain. Over continuous long-term operation for four years, the system was seen to be very robust as it was able to handle wide variations in the volumes and characteristics of sewage, as well as absorb shock loads without compromising the reactor performance. The sustainability of the system can be further enhanced by upgrading it to a circular biorefinery. Energy sources in the form of volatile fatty acids (VFAs) can be extracted from the weeds removed from SHEFROL and then the weeds can be converted into organic fertilizer using high-rate vermireactors recently developed by the authors.
A novel and inexpensive, yet very efficient sewage treatment system is presented.The versatility and robustness of the system has been assessed at pilot plant scale for several years.The long-term continuous studies establish the efficacy of five common weedsnot hitherto explored at pilot plant levelwhich can serve as the main bioagent(s) in the sewage treatment system.The system has the potential of being transformed in to a closed-loop-no-waste biorefinery.
Assuntos
Biodegradação Ambiental , Reatores Biológicos , Plantas Daninhas , Esgotos , Eliminação de Resíduos Líquidos , Projetos Piloto , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismoRESUMO
The dreaded weed ipomea (Ipomea carnea), has shown promise as a versatile phytoremediator. But I. carnea plants exude several alkaloids and phenols which are harmful to plants as well as animals. Due to this, the weed imparts as much or more toxicity to the soil as it remediates. These authors have earlier found that upon being vermicomposted by Eisenia fetida ipomea loses its toxicity and becomes a benign organic fertilizer with pest repellant attributes. These findings open up the possibility of using earthworms in those segments of land which are sought to be phytoremediated by ipomea so that the earthworms can keep converting the dead ipomea plants and the debris of live plants to fertilizer. The present work has aimed to determine whether the extent and nature of earthworm impact differs from species to species or is similar across different species. It has revealed that the action of each of the four different earthworm species deployed by the authors caused the C:N ratio of ipomea to change drastically ̶ from 28.20 to 15.95 ± 0.75, bringing the vermicomposts to the category of fertilizers fit for horticulture. The Fourier transform infrared (FTIR) spectra revealed that all the species caused a breakdown of the alkaloids and the phenolic compounds present in ipomea, resulting in the weed's detoxification. The earthworms also effected partial degradation of the lignocellulosic content of ipomea to simpler and more soil-friendly constituents like humic acids. Thermogravimetry, differential scanning calorimetry and scanning electron microscopy corroborated these findings. The influence exerted by the four species of earthworms was similarly beneficial in nature and extent.
First-ever study which establishes the general applicability of earthworms in nullifying the toxic impacts caused by ipomea during its use in phytoremediation, thereby greatly enhancing ipomea's value as a phytoremediator. The studies also provide an avenue for the utilization of the otherwise worthless ipomea harvested after phytoremediation or from natural stands.