RESUMO
The polyanion, inorganic polyphosphate (polyP), is a procoagulant molecule which has become a promising therapeutic target in the development of antithrombotics. Neutralizing polyP's prothrombotic activity using polycationic inhibitors is one of the viable strategies to design new polyP inhibitors. However, in this approach, a fine balance between the electrostatic interaction of polyP and the inhibitor is needed. Any unprotected polycations are known to interact with negatively charged blood components, potentially resulting in platelet activation, cellular toxicity, and bleeding. Thus, designing potent polycationic polyP inhibitors with good biocompatibility is a major challenge. Building on our previous research on universal heparin reversal agent (UHRA), we report polyP inhibitors with a modified steric shield design. The molecular weight, number of cationic binding groups, and the length of the polyethylene glycol (PEG) chains were varied to arrive at the desired inhibitor. We studied two different PEG lengths (mPEG-750 versus mPEG-350) on the polyglycerol scaffold and investigated their influence on biocompatibility and polyP neutralization activity. The polyP inhibitor with mPEG-750 brush layer, mPEG750 UHRA-10, showed superior biocompatibility compared to its mPEG-350 analogs by a number of measured parameters without losing its neutralization activity. An increase in cationic binding groups (25 groups in mPEG750 UHRA-8 and 32 in mPEG750 UHRA-10 [HC]) did not alter the neutralization activity, which suggested that the mPEG-750 shield layer provides significant protection of cationic binding groups and thus helps to minimize unwanted nonspecific interactions. Furthermore, these modified polyP inhibitors are highly biocompatible compared to conventional polycations that have been previously used as polyP inhibitors (e.g., PAMAM dendrimers and polyethylenimine). Through this study, we demonstrated the importance of the design of steric shield toward highly biocompatible polyP inhibitors. This approach can be exploited in the design of highly biocompatible macromolecular inhibitors.
Assuntos
Fibrinolíticos , Polifosfatos , Fibrinolíticos/farmacologia , Ativação PlaquetáriaRESUMO
Multivalent binding inhibitors are a promising new class of antivirals that prevent virus infections by inhibiting virus binding to cell membranes. The design of these inhibitors is challenging as many properties, for example, inhibitor size and functionalization with virus attachment factors, strongly influence the inhibition efficiency. Here, virus binding inhibitors are synthesized, the size and functionalization of which are inspired by mucins, which are naturally occurring glycosylated proteins with high molecular weight (MDa range) and interact efficiently with various viruses. Hyperbranched polyglycerols (hPGs) with molecular weights ranging between 10 and 2600 kDa are synthesized, thereby hitting the size of mucins and allowing for determining the impact of inhibitor size on the inhibition efficiency. The hPGs are functionalized with sialic acids and sulfates, as suggested from the structure of mucins, and their inhibition efficiency is determined by probing the inhibition of influenza A virus (IAV) binding to membranes using various methods. The largest, mucin-sized inhibitor shows potent inhibition at pm concentrations, while the inhibition efficiency decreases with decreasing the molecular weight. Interestingly, the concentration-dependent IAV inhibition shows a biphasic behavior, which is attributed to differences in the binding affinity of the inhibitors to the two IAV envelope proteins, neuraminidase, and hemagglutinin.
Assuntos
Glicerol , Vírus da Influenza A , Mucinas , Polímeros , Ligação Viral , Animais , Antivirais/farmacologia , Membrana Celular/metabolismo , Membrana Celular/virologia , Cães , Glicerol/síntese química , Glicerol/metabolismo , Glicerol/farmacologia , Hemaglutininas Virais/metabolismo , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/metabolismo , Células Madin Darby de Rim Canino , Peso Molecular , Mucinas/química , Neuraminidase/metabolismo , Polímeros/síntese química , Polímeros/metabolismo , Polímeros/farmacologia , Ligação Viral/efeitos dos fármacosRESUMO
In this Review, we highlight well-described and emerging polyanions, and the way these molecules can be targeted in the design of potential therapeutics (synthetic and biologics) with applications in thrombosis and hemostasis. It is important to strike a balance between bleeding and clotting. In thrombosis, unwanted blood clots are formed in the lumen of a blood vessel, obstructing the flow of blood through the circulatory system. Over many years of research, several polyanionic biopolymers that can either impede (anticoagulant) or promote (procoagulant) blood clotting have been identified. Mediators impeding blood clotting, including polyanionic polysaccharides such as heparins and heparin mimics, are widely used as antithrombotics, although they impart adverse complications such as bleeding. Emerging synthetic polycations and well-described cationic proteins that are specifically designed to neutralize the biological activity of heparins to prevent bleeding complications are discussed. On the other hand, there is growing evidence that several polyanions bear a procoagulant nature in blood; polyphosphate (polyP), neutrophil extracellular traps (NETs), extracellular RNA, and cell-free DNA are shown to promote blood clotting. Recent research highlights the use of polycations and enzymes that either inhibit or cleave these procoagulant polyanions and demonstrates the proof-of-concept design of new antithrombotics without bleeding side effects. Additional studies have shown that some of these procoagulant polyanions can be used as a hemostat to prevent bleeding in an emergency. There are significant opportunities for chemists in the design of new inhibitors and agents with improved selectivity toward these biological polyanions, furthering the development of novel therapeutics.
Assuntos
Coagulação Sanguínea , Heparina , Anticoagulantes/farmacologia , Hemorragia , Heparina/farmacologia , Humanos , PolieletrólitosRESUMO
Ring opening copolymerization (ROCOP) of epoxides and cyclic anhydrides has become an attractive approach for the synthesis of biodegradable polyesters with various compositions. Encouraged by the efficiency and versatility of a series of amido-oxazolinate zinc complexes, in this study they were shown to be active catalysts for the synthesis of unsaturated polyesters via ROCOP of maleic anhydride and various epoxides. The relative activity of epoxides in these reactions was observed to be styrene oxide > cyclohexene oxide > phenyl glycidyl ether, which could be correlated with the electronic and steric features of the substrate. To provide more structural possibilities for the polyesters, the difference in epoxide reactivity was exploited in an attempt to prepare block terpolymers from one anhydride and two epoxides. Terpolymerization was carried out in one or two steps in a single pot. The thermal characterization by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques suggested that the resulting materials were mostly random terpolymers.
Assuntos
Amidas/química , Compostos de Epóxi/química , Anidridos Maleicos/química , Oxazóis/química , Polimerização , Zinco/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cicloexenos/química , Espectroscopia de Prótons por Ressonância Magnética , Temperatura , TermogravimetriaRESUMO
Inorganic polyphosphate (polyP) released by human platelets has recently been shown to activate blood clotting and identified as a potential target for the development of novel antithrombotics. Recent studies have shown that polymers with cationic binding groups (CBGs) inhibit polyP and attenuate thrombosis. However, a good molecular-level understanding of the binding mechanism is lacking for further drug development. While molecular dynamics (MD) simulation can provide molecule-level information, the time scale required to simulate these large biomacromolecules makes classical MD simulation impractical. To overcome this challenge, we employed metadynamics simulations with both all-atom and coarse-grained force fields. The force field parameters for polyethylene glycol (PEG) conjugated CBGs and polyP were developed to carry out coarse-grained MD simulations, which enabled simulations of these large biomacromolecules in a reasonable time scale. We found that the length of the PEG tail does not impact the interaction between the (PEG) n-CBG and polyP. As expected, increasing the number of the charged tertiary amine groups in the head group strengthens its binding to polyP. Our simulation shows that (PEG) n-CBG initially form aggregates, mostly with the PEG in the core and the hydrophilic CBG groups pointing toward water; then the aggregates approach the polyP and sandwich the polyP to form a complex. We found that the binding of (PEG) n-CBG remains intact against various lengths of polyP. Binding thermodynamics for two of the (PEG) n-CBG/polyP systems simulated were measured by isothermal titration calorimetry to confirm the key finding of the simulations that the length PEG tail does not influence ligand binding to polyP.
Assuntos
Simulação de Dinâmica Molecular , Polietilenoglicóis/química , Polímeros/química , Polifosfatos/química , Fenômenos Biofísicos , Plaquetas/química , Calorimetria , Cátions/química , Humanos , Polifosfatos/antagonistas & inibidores , Termodinâmica , Água/químicaRESUMO
Three hyperbranched polyglycerol nanoparticle (HPG NP) variants were synthesized and fluorescently labeled for the study of their cellular interactions. The polymeric nanoparticle that contains a hydrophobic core and a hydrophilic HPG shell, HPG-C10-HPG, is taken up faster by HT-29 cancer cells than nontransformed cells, while similar uptake rates are observed with both cell types for the nanoparticle HPG-C10-PEG that contains a hydrophobic core and a polyethylene glycol shell. The nanoparticle HPG-104, containing neither the hydrophobic core nor the polyethylene glycol shell, is taken up faster by nontransformed cells than HT-29 cells. Importantly, cancer and normal cells can utilize different endocytic mechanisms for the internalization of these HPG NPs. Both HPG-C10-HPG and HPG-C10-PEG are taken up by HT-29 cells through clathrin-mediated endocytosis and macropinocytosis. Nontransformed cells, however, take up HPG-C10-HPG and HPG-104 through macropinocytosis, while these cells utilize both clathrin-mediated endocytosis and macropinocytosis to internalize HPG-C10-PEG.
Assuntos
Portadores de Fármacos , Endocitose/efeitos dos fármacos , Nanopartículas/química , Neoplasias/metabolismo , Linhagem Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Humanos , Neoplasias/patologiaRESUMO
Heparins are widely used to prevent blood clotting during surgeries and for the treatment of thrombosis. However, bleeding associated with heparin therapy is a concern. Protamine, the only approved antidote for unfractionated heparin (UFH) could cause adverse cardiovascular events. Here, we describe a unique molecular design used in the development of a synthetic dendritic polycation named as universal heparin reversal agent (UHRA), an antidote for all clinically used heparin anticoagulants. We elucidate the mechanistic basis for the selectivity of UHRA to heparins and its nontoxic nature. Isothermal titration calorimetry based binding studies of UHRAs having different methoxypolyethylene glycol (mPEG) brush structures with UFH as a function of solution conditions, including ionic strength, revealed that mPEG chains impose entropic penalty to the electrostatic binding. Binding studies confirm that, unlike protamine or N-UHRA (a truncated analogue of UHRA with no mPEG chains), the mPEG chains in UHRA avert nonspecific interactions with blood proteins and provide selectivity toward heparins through a combined steric repulsion and Donnan shielding effect (a balance of Fel and Fsteric). Clotting assays reveal that UHRA with mPEG chains did not adversely affect clotting, and neutralized UFH over a wide range of concentrations. Conversely, N-UHRA and protamine display intrinsic anticoagulant activity and showed a narrow concentration window for UFH neutralization. In addition, we found that mPEG chains regulate the size of antidote-UFH complexes, as revealed by atomic force microscopy and dynamic light scattering studies. UHRA molecules with mPEG chains formed smaller complexes with UFH, compared to N-UHRA and protamine. Finally, fluorescence and ELISA experiments show that UHRA disrupts antithrombin-UFH complexes to neutralize heparin's activity.
Assuntos
Anticoagulantes/síntese química , Heparina/análogos & derivados , Anticoagulantes/efeitos adversos , Anticoagulantes/química , Antídotos/síntese química , Antídotos/química , Coagulação Sanguínea , Proteínas Sanguíneas/metabolismo , Heparina/efeitos adversos , Humanos , Concentração Osmolar , Polietilenoglicóis/química , Ligação Proteica , Eletricidade EstáticaRESUMO
Understanding the influence of degradable chemical moieties on in vivo degradation, tissue distribution, and excretion is critical for the design of novel biodegradable drug carriers. Polyketals have recently emerged as a promising therapeutic delivery platform due to their ability to degrade under mild acidic intracellular compartments and generation of nontoxic degradation products. However, the effect of chemical structure of the ketal groups on the in vivo degradation, biodistribution, and pharmacokinetics of water-soluble ketal-containing polymers has not been explored. In the present work, we synthesized high molecular weight, water-soluble biodegradable hyperbranched polyglycerols (BHPGs) through the incorporation of structurally different ketal groups into the main chain of highly biocompatible polyglycerols. BHPGs showed pH and ketal group structure dependent degradation in buffer solutions. When the polymers were intravenously administered in mice, a strong dependence of in vivo degradation, biodistribution, and clearance on the ketal group structure was observed. All the BHPGs demonstrated degradation and clearance in vivo, with minimal tissue accumulation. Interestingly, an unanticipated degradation behavior of BHPGs with structurally different ketal groups was observed in vivo in comparison to their degradation in buffer solutions. BHPGs with cyclohexyl ketal (CHK) and cyclopentyl ketal (CPK) groups degraded much faster and were cleared from circulation much rapidly, while BHPG with glycerol hydroxy butanone ketal (GHBK) group degraded at a much slower rate and exhibited similar plasma half-life as that of nondegradable HPG. BHPG-GHBK also showed significantly lower tissue accumulation than nondegradable HPG after 30 days of administration. The difference in in vivo degradation may be attributed to the difference in hydrophobic characteristics of different ketal containing polymers, which may change their interaction with proteins and cells in vivo. This is the first study that demonstrates the influence of chemical structure of ketal groups on in vivo degradation and circulation profile of polymers, and through proper surface modifications, these polymers would be useful as multifunctional drug carriers.
Assuntos
Materiais Biocompatíveis/química , Portadores de Fármacos/química , Glicerol/química , Polímeros/química , Ácidos/química , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/farmacocinética , Portadores de Fármacos/síntese química , Portadores de Fármacos/farmacocinética , Glicerol/síntese química , Glicerol/farmacocinética , Humanos , Camundongos , Estrutura Molecular , Polímeros/síntese química , Polímeros/farmacocinética , Distribuição Tecidual , Água/químicaRESUMO
Reaction of lithiated chiral, unsymmetric ß-diketimine type ligands HL(2a-e) containing oxazoline moiety (HL(2a-e) = 2-(2'-R(1)NH)-phenyl-4-R(2)-oxazoline) with trans-NiCl(Ph)(PPh(3))(2) afforded a series of new chiral CNN pincer type nickel complexes (3a-3e) via an unexpected cyclometalation at benzylic or aryl C-H positions. Single crystal X-ray diffraction analysis established the pincer coordination mode and the strained conformation. Chirality, and in one case, racemization of the target nickel complexes were confirmed by circular dichroism (CD) spectroscopy. Electronic structure and band assignments in experimental UV-vis and CD spectra were discussed on the basis of Density Functional Theory (DFT) and time-dependent (TD) DFT calculations.
Assuntos
Níquel/química , Compostos Organometálicos/química , Compostos Organometálicos/síntese química , Teoria Quântica , Iminas/química , Ligantes , Modelos Moleculares , Estrutura MolecularRESUMO
Cell-based iron overload models provide tremendous utility for the investigations into the pathogenesis of different diseases as well as assessing efficacy of various therapeutic strategies. In the literature, establishing such models vary widely with regards to cell lines, iron source, iron treatment conditions and duration. Due to this diversity, researchers reported significant differences in the measured outcomes, either in cellular function or response to a stimulus. Herein, we report the process required to establish an iron overload HepG2 cell model to achieve a consistent and reproducible results such that the literature can strive towards a consensus. Iron loading in cells was achieved with 50 µM of iron every 24 h for 2 days, followed by an additional 24 h of maintenance in fresh media. We demonstrated that iron overloaded cells had significantly increased ROS generation, labile and total iron whilst having various cellular functions resemble cells without iron overload. The present report addresses key pitfalls with regards to the lack of consensus currently present in the literature.
Assuntos
Sobrecarga de Ferro , Humanos , Células Hep G2 , Espécies Reativas de Oxigênio/metabolismo , Sobrecarga de Ferro/metabolismo , Ferro/metabolismoRESUMO
Current treatments to prevent thrombosis, namely anticoagulants and platelets antagonists, remain complicated by the persistent risk of bleeding. Improved therapeutic strategies that diminish this risk would have a huge clinical impact. Antithrombotic agents that neutralize and inhibit polyphosphate (polyP) can be a powerful approach towards such a goal. Here, we report a design concept towards polyP inhibition, termed macromolecular polyanion inhibitors (MPI), with high binding affinity and specificity. Lead antithrombotic candidates are identified through a library screening of molecules which possess low charge density at physiological pH but which increase their charge upon binding to polyP, providing a smart way to enhance their activity and selectivity. The lead MPI candidates demonstrates antithrombotic activity in mouse models of thrombosis, does not give rise to bleeding, and is well tolerated in mice even at very high doses. The developed inhibitor is anticipated to open avenues in thrombosis prevention without bleeding risk, a challenge not addressed by current therapies.
Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Trombose , Camundongos , Animais , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Ligantes , Trombose/tratamento farmacológico , Trombose/prevenção & controle , Anticoagulantes/efeitos adversos , Hemorragia/induzido quimicamente , Hemorragia/prevenção & controle , Hemorragia/tratamento farmacológico , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/uso terapêuticoRESUMO
Liver dysfunction and failure account for a major portion of premature deaths in patients suffering from various iron associated pathogeneses, particularly primary and secondary iron overload disorders, despite intensive treatment. The liver is a central player in iron homeostasis and a major iron storage organ, and currently, there are no active approaches for the excretion of excess liver iron. Herein, we report a new method for the rapid reduction of iron burden in iron overload diseases by developing a new class of liver targeted nanochelators with favorable pharmacokinetics and biodistribution. The new nanochelators bypass the reticuloendothelial system and specifically target hepatocytes without non-specific accumulation in other organs. The targeted nanochelators bound and neutralized excess iron in the liver and from the vasculature and, eventually leading to rapid hepatobiliary excretion of labile iron. Further, these rapidly excreted nanochelators did not induce toxicity in the liver, were highly cytocompatible in both iron overload and non-loaded conditions, and were promising in mitigating iron triggered free radical oxidative damage. These studies provide key insights into the development of organ targeted nanochelating systems and the rapid reduction of iron burden in vivo. This methodology allows for further development of nanotherapeutics for specific iron overload diseases.
Assuntos
Sobrecarga de Ferro , Ferro , Transporte Biológico Ativo , Radicais Livres/metabolismo , Humanos , Ferro/metabolismo , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/metabolismo , Fígado/metabolismo , Distribuição TecidualRESUMO
To prevent SARS-CoV-2 infections and generate long-lasting immunity, vaccines need to generate strong viral-specific B and T cell responses. Previous results from our lab and others have shown that immunizations in the presence of an OX40 agonist antibody lead to higher antibody titers and increased numbers of long-lived antigen-specific CD4 and CD8 T cells. Using a similar strategy, we explored the effect of OX40 co-stimulation in a prime and boost vaccination scheme using an adjuvanted SARS-CoV-2 spike protein vaccine in C57BL/6 mice. Our results show that OX40 engagement during vaccination significantly increases long-lived antibody responses to the spike protein. In addition, after immunization spike protein-specific proliferation was greatly increased for both CD4 and CD8 T cells, with enhanced, spike-specific secretion of IFN-γ and IL-2. Booster (3rd injection) immunizations combined with an OX40 agonist (7 months post-prime) further increased vaccine-specific antibody and T cell responses. Initial experiments assessing a self-amplifying mRNA (saRNA) vaccine encoding the spike protein antigen show a robust antigen-specific CD8 T cell response. The saRNA spike-specific CD8 T cells express high levels of GrzmB, IFN-γ and TNF-α which was not observed with protein immunization and this response was further increased by the OX40 agonist. Similar to protein immunizations the OX40 agonist also increased vaccine-specific CD4 T cell responses. In summary, this study compares and contrasts the effects and benefits of both protein and saRNA vaccination and the extent to which an OX40 agonist enhances and sustains the immune response against the SARS-CoV-2 spike protein.
Assuntos
COVID-19 , Vacinas , Animais , COVID-19/prevenção & controle , Humanos , Interleucina-2 , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Fator de Necrose Tumoral alfaRESUMO
The long-term prevention of biofilm formation on the surface of indwelling medical devices remains a challenge. Silver has been reutilized in recent years for combating biofilm formation due to its indisputable bactericidal potency; however, the toxicity, low stability, and short-term activity of the current silver coatings have limited their use. Here, we report the development of silver-based film-forming antibacterial engineered (SAFE) assemblies for the generation of durable lubricous antibiofilm surface long-term activity without silver toxicity that was applicable to diverse materials via a highly scalable dip/spray/solution-skinning process. The SAFE coating was obtained through a large-scale screening, resulting in effective incorporation of silver nanoparticles (â¼10 nm) into a stable nonsticky coating with high surface hierarchy and coverage, which guaranteed sustained silver release. The lead coating showed zero bacterial adhesion over a 1 month experiment in the presence of a high load of diverse bacteria, including difficult-to-kill and stone-forming strains. The SAFE coating showed high biocompatibility and excellent antibiofilm activity in vivo.
RESUMO
Quantification of iron is an important step to assess the iron burden in patients suffering from iron overload diseases, as well as tremendous value in understanding the underlying role of iron in the pathophysiology of these diseases. Current iron determination of total or labile iron, requires extensive sample handling and specialized instruments, whilst being time consuming and laborious. Moreover, there is minimal to no overlap between total iron and labile iron quantification methodologies-i.e. requiring entirely separate protocols, techniques and instruments. Herein, we report a unified-ferene (u-ferene) assay that enables a 2-in-1 quantification of both labile and total iron from the same preparation of a biological specimen. We demonstrate that labile iron concentrations determined from the u-ferene assay is in agreement with confocal laser scanning microscopy techniques employed within the literature. Further, this assay offers the same sensitivity as the current gold standard, inductively coupled plasma mass spectrometry (ICP-MS), for total iron measurements. The new u-ferene assay will have tremendous value for the wider scientific community as it offers an economic and readily accessible method for convenient 2-in-1 measurement of total and labile iron from biological samples, whilst maintaining the precision and sensitivity, as compared to ICP-MS.
Assuntos
Sobrecarga de Ferro/metabolismo , Ferro , Animais , Colorimetria , Células Hep G2 , Humanos , Ferro/análise , Ferro/metabolismo , Camundongos , Especificidade de ÓrgãosRESUMO
Iron is an essential mineral that serves as a prosthetic group for a variety of proteins involved in vital cellular processes. The iron economy within humans is highly conserved in that there is no proper iron excretion pathway. Therefore, iron homeostasis is highly evolved to coordinate iron acquisition, storage, transport, and recycling efficiently. A disturbance in this state can result in excess iron burden in which an ensuing iron-mediated generation of reactive oxygen species imparts widespread oxidative damage to proteins, lipids, and DNA. On the contrary, problems in iron deficiency either due to genetic or nutritional causes can lead to a number of iron deficiency disorders. Iron chelation strategies have been in the works since the early 1900s, and they still remain the most viable therapeutic approach to mitigate the toxic side effects of excess iron. Intense investigations on improving the efficacy of chelation strategies while being well tolerated and accepted by patients have been a particular focus for many researchers over the past 30 years. Moreover, recent advances in our understanding on the role of iron in the pathogenesis of different diseases (both in iron overload and iron deficiency conditions) motivate the need to develop new therapeutics. We summarized recent investigations into the role of iron in health and disease conditions, iron chelation, and iron delivery strategies. Information regarding small molecule as well as macromolecular approaches and how they are employed within different disease pathogenesis such as primary and secondary iron overload diseases, cancer, diabetes, neurodegenerative diseases, infections, and in iron deficiency is provided.
Assuntos
Deficiências de Ferro , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/metabolismo , Ferro/metabolismo , Animais , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Diabetes Mellitus/etiologia , Diabetes Mellitus/metabolismo , Fibrose/etiologia , Fibrose/metabolismo , Humanos , Ferro/análise , Ferro/uso terapêutico , Quelantes de Ferro/uso terapêutico , Sobrecarga de Ferro/tratamento farmacológico , Neoplasias/etiologia , Neoplasias/metabolismo , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismoRESUMO
The current study reports the use of small amplitude oscillatory rheometry to investigate the dynamics of blood clot formation upon heparin neutralization under three different oscillatory frequencies, two of which were mimicking physiological heart rates. We utilized two different heparin antidotes, namely protamine and newly developed universal heparin reversal agent (UHRA-7), at different concentrations to determine the quality of blood clot formed upon heparin neutralization by analyzing several key rheological parameters. Scanning electron microscopy (SEM) was used to determine the morphology and microstructure of the blood clot after heparin neutralization to support the rheological observations. The current study revealed that the structure of blood clots formed had significant differences when an oscillatory frequency that mimicked the physiological heart rate was used in comparison to a lower frequency commonly used in current clinical measurements. The limited working dose range for protamine and its intrinsic anticoagulation behaviour was observed. The neutralization profile of UHRA-7 showed a large window of activity. The global assessment of rheological parameters and microstructure of the clot together revealed additional details describing anticoagulant reversal and blood coagulation dynamics by relating the blood clot's fiber thickness and the oscillatory measurements, including storage modulus and blood clot's contractile force. Additionally, a mechanical characterization was conducted to provide a further assessment of blood coagulation using the rheological data.
Assuntos
Protaminas , Trombose , Anticoagulantes/farmacologia , Coagulação Sanguínea , Heparina/farmacologia , Humanos , Protaminas/farmacologiaRESUMO
The main viral protease (3CLpro) is indispensable for SARS-CoV-2 replication. We delineate the human protein substrate landscape of 3CLpro by TAILS substrate-targeted N-terminomics. We identify more than 100 substrates in human lung and kidney cells supported by analyses of SARS-CoV-2-infected cells. Enzyme kinetics and molecular docking simulations of 3CLpro engaging substrates reveal how noncanonical cleavage sites, which diverge from SARS-CoV, guide substrate specificity. Cleaving the interactors of essential effector proteins, effectively stranding them from their binding partners, amplifies the consequences of proteolysis. We show that 3CLpro targets the Hippo pathway, including inactivation of MAP4K5, and key effectors of transcription, mRNA processing, and translation. We demonstrate that Spike glycoprotein directly binds galectin-8, with galectin-8 cleavage disengaging CALCOCO2/NDP52 to decouple antiviral-autophagy. Indeed, in post-mortem COVID-19 lung samples, NDP52 rarely colocalizes with galectin-8, unlike in healthy lungs. The 3CLpro substrate degradome establishes a foundational substrate atlas to accelerate exploration of SARS-CoV-2 pathology and drug design.
Assuntos
COVID-19 , Proteases 3C de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , Humanos , Especificidade por SubstratoRESUMO
Iron is an essential micronutrient for life. Its redox activity is a key component in a plethora of vital enzymatic reactions that take place in processes such as drug metabolism, DNA synthesis, steroid synthesis, gene regulation, and cellular respiration (oxygen transport and the electron transport chain). Bacteria are highly dependent on iron for their survival and growth and have specific mechanisms to acquire iron. Limiting the availability of iron to bacteria, thereby preventing their growth, provides new opportunities to treat infection in the era of the persistent rise of antibiotic-resistant bacteria. In this work, we have developed macromolecular iron chelators, conjugates of a high-affinity iron chelator (HBEDS) with polyglycerol, in an attempt to sequester iron uptake by bacteria to limit their growth in order to enhance antibiotic activity. The new macromolecular chelators are successful in slowing the growth of Staphylococcus aureus and worked as an efficient bacteriostatic against S. aureus. Further, these cytocompatible macrochelators acted as effective adjuvants to prevent bacterial growth when used in conjunction with antibiotics. The adjuvant activity of the macrochelators depends on their molecular weight and the chelator density on these molecules. These selective macro iron(III) chelators are highly efficient in growth inhibition and killing of methicillin-resistant S. aureus in conjunction with a low concentration of rifampicin.
Assuntos
Antibacterianos/química , Glicerol/química , Quelantes de Ferro/química , Polímeros/química , Animais , Antibacterianos/síntese química , Antibacterianos/farmacologia , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Quelantes de Ferro/síntese química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Staphylococcus aureus/efeitos dos fármacosRESUMO
Nanomaterials in the blood must mitigate the immune response to have a prolonged vascular residency in vivo. The composition of the protein corona that forms at the nano-biointerface may be directing this, however, the possible correlation of corona composition with blood residency is currently unknown. Here' we report a panel of new soft single molecule polymer nanomaterials (SMPNs) with varying circulation times in mice (t1/2ß ~ 22 to 65 h) and use proteomics to probe protein corona at the nano-biointerface to elucidate the mechanism of blood residency of nanomaterials. The composition of the protein opsonins on SMPNs is qualitatively and quantitatively dynamic with time in circulation. SMPNs that circulate longer are able to clear some of the initial surface-bound common opsonins, including immunoglobulins, complement, and coagulation proteins. This continuous remodelling of protein opsonins may be an important decisive step in directing elimination or residence of soft nanomaterials in vivo.