RESUMO
RATIONALE: We developed an innovative, minimally invasive, highly efficient extracorporeal CO2 removal (ECCO2R) technique called respiratory electrodialysis (R-ED). OBJECTIVES: To evaluate the efficacy of R-ED in controlling ventilation compared with conventional ECCO2R technology. METHODS: Five mechanically ventilated swine were connected to a custom-made circuit optimized for R-ED, consisting of a hemofilter, a membrane lung, and an electrodialysis cell. Electrodialysis regionally modulates blood electrolyte concentration to convert bicarbonate to CO2 before entering the membrane lung, enhancing membrane lung CO2 extraction. All animals underwent three repeated experimental sequences, consisting of four steps: baseline (1 h), conventional ECCO2R (2 h), R-ED (2 h), and final NO-ECCO2R (1 h). Blood and gas flow were 250 ml/min and 10 L/min, respectively. Tidal volume was set at 8 ml/kg, and respiratory rate was adjusted to maintain arterial Pco2 at 50 mm Hg. MEASUREMENTS AND MAIN RESULTS: During R-ED, chloride and H(+) concentration increased in blood entering the membrane lung, almost doubling CO2 extraction compared with ECCO2R (112 ± 6 vs. 64 ± 5 ml/min, P < 0.001). Compared with baseline, R-ED and ECCO2R reduced minute ventilation by 50% and 27%, respectively. Systemic arterial gas analyses remained stable during the experimental phases. No major complication occurred, but there was an increase in creatinine level. CONCLUSIONS: In this first in vivo application, we proved electrodialysis feasible and effective in increasing membrane lung CO2 extraction. R-ED was more effective than conventional ECCO2R technology in controlling ventilation. Further studies are warranted to assess the safety profile of R-ED, especially regarding kidney function.
Assuntos
Dióxido de Carbono/sangue , Circulação Extracorpórea/métodos , Hipercapnia/terapia , Respiração Artificial/métodos , Insuficiência Respiratória/complicações , Animais , Biomarcadores/sangue , Gasometria , Diálise , Hipercapnia/sangue , Hipercapnia/etiologia , Insuficiência Respiratória/sangue , Insuficiência Respiratória/terapia , Suínos , Volume de Ventilação PulmonarRESUMO
We previously described a highly efficient extracorporeal CO2 removal technique called respiratory electrodialysis (R-ED). Respiratory electrodialysis was composed of a hemodiafilter and a membrane lung (ML) positioned along the extracorporeal blood circuit, and an electrodialysis (ED) cell positioned on the hemodiafiltrate. The ED regionally increased blood chloride concentration to convert bicarbonate to CO2 upstream the ML, thus enhancing ML CO2 extraction (VCO2ML). In this in vitro study, with an aqueous polyelectrolytic carbonated solution mimicking blood, we tested a new R-ED setup, featuring an ML positioned on the hemodiafiltrate after the ED, at increasing ED current levels (0, 2, 4, 6, and 8 A). We measured VCO2ML, electrolytes concentrations, and pH of the extracorporeal circuit. Raising levels of ED-current increased chloride concentration from 107.5 ± 1.6 to 114.6 ± 1.3 mEq/L (0 vs. 8 A, p < 0.001) and reduced pH from 7.48 ± 0.01 to 6.51 ± 0.05 (0 vs. 8 A, p < 0.001) of the hemodiafiltrate entering the ML. Subsequently, VCO2ML increased from 27 ± 1.7 to 91.3 ± 1.5 ml/min (0 vs. 8 A, p < 0.001). Respiratory electrodialysis is efficient in increasing VCO2ML of an extracorporeal circuit featuring an ML perfused by hemodiafiltrate. During R-ED, the VCO2ML can be significantly enhanced by increasing the ED current.