Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612098

RESUMO

The flow behaviour of AA2060 Al alloy under warm/hot deformation conditions is complicated because of its dependency on strain rates (ε˙), strain (ε), and deformation modes. Thus, it is crucial to reveal and predict the flow behaviours of this alloy at a wide range of temperatures (T) and ε˙ using different constitutive models. Firstly, the isothermal tensile tests were carried out via a Gleeble-3800 thermomechanical simulator at a T range of 100, 200, 300, 400, and 500 °C and ε˙ range of 0.01, 0.1, 1, and 10 s-1 to reveal the warm/hot flow behaviours of AA2060 alloy sheet. Consequently, three phenomenological-based constitutive models (L-MJC, S1-MJC, S2-MJC) and a modified Zerilli-Armstrong (MZA) model representing physically based constitutive models were developed to precisely predict the flow behaviour of AA2060 alloy sheet under a wide range of T and ε˙. The predictability of the developed constitutive models was assessed and compared using various statistical parameters, including the correlation coefficient (R), average absolute relative error (AARE), and root mean square error (RMSE). By comparing the results determined from these models and those obtained from experimentations, and confirmed by R, AARE, and RMSE values, it is concluded that the predicted stresses determined from the S2-MJC model align closely with the experimental stresses, demonstrating a remarkable fit compared to the S1-MJC, L-MJC, and MZA models. This is because of the linking impact between softening, the strain rate, and strain hardening in the S2-MJC model. It is widely known that the dislocation process is affected by softening and strain rates. This is attributed to the interactions that occurred between ε and ε˙ from one side and between ε, ε˙, and T from the other side using an extensive set of constants correlating the constitutive components of dynamic recovery and softening mechanisms.

2.
Materials (Basel) ; 17(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38255601

RESUMO

This study investigated the effect of a hemispherical friction stir welding (FSW) tool on the heat generation and mechanical properties of dissimilar butt welded AA5083 and AA7075 alloys. FSW was performed on the dissimilar aluminum alloys AA5083-H111 and AA7075-T6 using welding speeds of 25, 50, and 75 mm/min. The tool rotation rate was kept constant at 500 rpm. An analytical model was developed to calculate heat generation and temperature distribution during the FSW process utilizing a hemispherical tool. The experimental results were compared to the calculated data. The latter confirms the accuracy of the analytical model, demonstrating a high degree of agreement. Sound FSW dissimilar joints were achieved at welding speeds of 50 and 25 mm/min. Meanwhile, joints created at a welding speed of 75 mm/min exhibited a tunnel-like defect, which can be attributed to the minimal heat generated at this particular welding speed. At a lower welding speed of 25 mm/min, a higher tensile strength of the dissimilar FSWed joints AA5083 and AA7075 was achieved with a joint efficiency of over 97%.

3.
Materials (Basel) ; 16(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37176303

RESUMO

Friction stir spot welding (FSSW) of similar AA5052-H32 joints has numerous benefits in shipbuilding, aerospace, and automotive structural applications. In addition, studying the role of tool rotation speed on the microstructure features, achieved textures, and joint performance of the friction stir spot-welded (FSSWed) joint still needs more systematic research. Different FSSWed AA5052-H32 lap joints of 4 mm thickness were produced at different heat inputs using three tool rotation speeds of 1500, 1000, and 500 rpm at a constant dwell time of 2 s. The applied thermal heat inputs for achieving the FSSW processes were calculated. The produced joints were characterized by their appearance, macrostructures, microstructures, and mechanical properties (hardness contour maps and maximum tensile-shear load) at room temperature. The grain structure and texture developed for all the FSSWed joints were deeply investigated using an advanced electron backscattering diffraction (EBSD) technique and compared with the base material (BM). The main results showed that the average hardness value of the stir zone (SZ) in the welded joints is higher than that in the AA5052-H32 BM for all applied rotation speeds, and it decreases as the rotation speed increases from 500 to 1000 rpm. This SZ enhancement in hardness compared to the BM cold-rolled grain structure is caused by the high grain refining due to the dynamic recrystallization associated with the FSSW. The average grain size values of the stir zones are 11, 9, and 4 µm for the FSSWed joints processed at 1500, 1000, and 500 rpm, respectively, while the BM average grain size is 40 µm. The simple shear texture with B/-B components mainly dominates the texture. Compared to the welded joints, the joint processed at 500 rpm and a 2 s duration time attains the highest tensile-shear load value of 4330 N. This value decreases with increasing rotation speed to reach 2569 N at a rotation speed of 1500. After tensile testing of the FSSWed joints, the fracture surface was also examined and discussed.

4.
Materials (Basel) ; 16(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37049113

RESUMO

Friction stir-spot welding (FSSW) as a solid-state joining process for local welding offers a number of benefits for applications in the automotive, aerospace, and marine industries. In these industries, and from an economic point of view, producing spot welds at a low rotating speed and in a short time is critical for saving energy and enhancing productivity. This investigation helped fill a knowledge gap in the literature about FSSW of 4 mm similar lap joints of AA5052-H32 sheet materials, in which welding takes place over a short time period with a slow tool rotation speed. Consequently, the purpose of this work was to investigate the feasibility of FSSW 2 mm thick AA5052-H32 aluminum alloy sheets to produce 4 mm thick similar spot lap joints at various low dwell times of 1, 2, and 3 s and a constant relatively low tool rotation speed of 500 rpm. The introduced heat input for the friction stir-spot welded (FSSWed) lap joints was calculated based on the applied processing parameters. Joint appearance, cross-section macrostructures, and microstructure features of all the spot welds were evaluated. The mechanical properties (hardness contour maps and maximum tensile shear loads) were also examined. The results show that joining 2 mm sheet thickness AA5052-H32 at a low heat input in defect-free similar lap joints could be successfully achieved. The stir zone (SZ) region became wider as the dwell time increased from 1 to 3 s. The hardness value of the SZ was higher than that attained by the AA5052-H32 base material (BM) for all applied dwell times. Especially at 2 s, the hardness of the SZ was approximately 48% higher than that of the BM. This increase in hardness may be attributed to the high grain refinement of the new dynamically recrystallized grain (4 µm) in the SZ compared to the cold-rolled BM grain size (40 µm). Among the tried FSSW process variables, the dwell time of 2 s at a rotation rate of 500 rpm also produced the maximum tensile shear load of 4330 N. Finally, the locations and features of the fracture surfaces of the FSSWed joints were examined using a scanning electron microscope (SEM) and the obtained results were discussed.

5.
Materials (Basel) ; 16(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37297204

RESUMO

This study aimed to propose a new approach for predicting the warm deformation behaviour of AA2060-T8 sheets by coupling computational homogenization (CH) with crystal plasticity (CP) modeling. Firstly, to reveal the warm deformation behaviour of the AA2060-T8 sheet, isothermal warm tensile testing was accomplished using a Gleeble-3800 thermomechanical simulator at the temperatures and strain rates that varied from 373 to 573 K and 0.001 to 0.1 s-1. Then, a novel crystal plasticity model was proposed for describing the grains' behaviour and reflecting the crystals' actual deformation mechanism under warm forming conditions. Afterward, to clarify the in-grain deformation and link the mechanical behaviour of AA2060-T8 with its microstructural state, RVE elements were created to represent the microstructure of AA2060-T8, where several finite elements discretized every grain. A remarkable accordance was observed between the predicted results and their experimental counterparts for all testing conditions. This signifies that coupling CH with CP modelling can successfully determine the warm deformation behaviour of AA2060-T8 (polycrystalline metals) under different working conditions.

6.
Materials (Basel) ; 16(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38068129

RESUMO

Forming tubes with various bending radii without changing the bending dies is much easier for the 3D free bending forming (FBF) process. In the 3D-FBF process, different bending radii were realized by adapting the eccentricities of the bending dies. The accuracy of the U-R curve is crucial for the precision forming of complex bending components. In this study, the U-R relation curve of the Al alloy tube with a specific friction coefficient, fixed geometry size, clearance between tubes, and bending die was fitted first based on the forming results of AA6061-T6 tubes under different eccentricities. Second, the U-R relationship curve based on the experiment is used to propose the U-R relationship's mathematical formula based on many hypotheses. Finally, the modified U-R mathematical formula was applied in the finite element (FE) simulation and the actual FBF experiments for the AA6061-T6 Al alloy complex shape space bending members. The U-R relationship curve's reliability was verified by comparing the simulation and experimental results. The results obtained from the modified U-R relationship align well with the FE modeling results and can be directly applied to the bending process for the intended components.

7.
J Adv Res ; 18: 19-37, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30809392

RESUMO

Since AA2060-T8 was introduced in the past few years, investigating the mechanical response, fracture mechanisms, and anisotropic behaviour of AA2060-T8 sheets under high strain rate deformation has been crucial. Thus, uniaxial tensile tests were performed under quasi-static, intermediate, and high strain rate conditions using universal testing machines as well as split Hopkinson tensile bars. The experimental results showed that the ductility of AA2060-T8 sheets was improved during high strain rate deformation because of the adiabatic softening and the inertia effect which contribute to slow down the necking development, and these results were verified by the fracture morphologies of high strain rate tensile samples. Furthermore, the strain rate hardening influence of AA2060-T8 was significant. Therefore, the Johnson-Cook constitutive model was modified to consider the effects of both strain and strain rates on the strain hardening coefficient. The results obtained from the improved Johnson-Cook constitutive model are in remarkable accordance with those obtained from experimental work. Thus, the improved Johnson-Cook model can predict the flow behavior of AA2060-T8 sheets at room temperature over a wide range of strain rates. The results of the present study can efficiently be used to develop a new manufacturing route based on impact hydroforming technology (IHF) to manufacture sound thin-walled-complex shape components from AA2060-T8 sheets at room temperature.

8.
J Adv Res ; 10: 49-67, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30034867

RESUMO

Al-Li alloys are attractive for military and aerospace applications because their properties are superior to those of conventional Al alloys. Their exceptional properties are attributed to the addition of Li into the Al matrix, and the technical reasons for adding Li to the Al matrix are presented. The developmental history and applications of Al-Li alloys over the last few years are reviewed. The main issue of Al-Li alloys is anisotropic behavior, and the main reasons for the anisotropic tensile properties and practical methods to reduce it are also introduced. Additionally, the strengthening mechanisms and deformation behavior of Al-Li alloys are surveyed with reference to the composition, processing, and microstructure interactions. Additionally, the methods for improving the formability, strength, and fracture toughness of Al-Li alloys are investigated. These practical methods have significantly reduced the anisotropic tensile properties and improved the formability, strength, and fracture toughness of Al-Li alloys. However, additional endeavours are required to further enhance the crystallographic texture, control the anisotropic behavior, and improve the formability and damage tolerance of Al-Li alloys.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA