Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Am J Physiol Renal Physiol ; 323(6): F633-F641, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36201326

RESUMO

The activity of the epithelial Na+ channel (ENaC) in principal cells of the distal nephron fine-tunes renal Na+ excretion. The renin-angiotensin-aldosterone system modulates ENaC activity to control blood pressure, in part, by influencing Na+ excretion. NADPH oxidase activator 1-dependent NADPH oxidase 1 (NOXA1/NOX1) signaling may play a key role in angiotensin II (ANG II)-dependent activation of ENaC. The present study aimed to explore the role of NOXA1/NOX1 signaling in ANG II-dependent activation of ENaC in renal principal cells. Patch-clamp electrophysiology and principal cell-specific Noxa1 knockout (PC-Noxa1 KO) mice were used to determine the role of NOXA1/NOX1 signaling in ANG II-dependent activation of ENaC. The activity of ENaC in the luminal plasma membrane of principal cells was quantified in freshly isolated split-opened tubules using voltage-clamp electrophysiology. ANG II significantly increased ENaC activity. This effect was robust and observed in response to both acute (40 min) and more chronic (48-72 h) ANG II treatment of isolated tubules and mice, respectively. Inhibition of ANG II type 1 receptors with losartan abolished ANG II-dependent stimulation of ENaC. Similarly, treatment with ML171, a specific inhibitor of NOX1, abolished stimulation of ENaC by ANG II. Treatment with ANG II failed to increase ENaC activity in principal cells in tubules isolated from the PC-Noxa1 KO mouse. Tubules from wild-type littermate controls, though, retained their ability to respond to ANG II with an increase in ENaC activity. These results indicate that NOXA1/NOX1 signaling mediates ANG II stimulation of ENaC in renal principal cells. As such, NOXA1/NOX1 signaling in the distal nephron plays a central role in Na+ homeostasis and control of blood pressure, particularly as it relates to regulation by the renin-ANG II axis.NEW & NOTEWORTHY Activity of the epithelial Na+ channel (ENaC) in the distal nephron fine-tunes renal Na+ excretion. Angiotensin II (ANG II) has been reported to enhance ENaC activity. Emerging evidence suggests that NADPH oxidase (NOX) signaling plays an important role in the stimulation of ENaC by ANG II in principal cells. The present findings indicate that NOX activator 1/NOX1 signaling mediates ANG II stimulation of ENaC in renal principal cells.


Assuntos
Angiotensina II , Canais Epiteliais de Sódio , Animais , Camundongos , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Angiotensina II/farmacologia , Angiotensina II/metabolismo , NADPH Oxidase 1/metabolismo , Sódio/metabolismo , Camundongos Knockout , NADPH Oxidases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
2.
Environ Res ; 204(Pt B): 112092, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34562480

RESUMO

Various lineages of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have contributed to prolongation of the Coronavirus Disease 2019 (COVID-19) pandemic. Several non-synonymous mutations in SARS-CoV-2 proteins have generated multiple SARS-CoV-2 variants. In our previous report, we have shown that an evenly uneven distribution of unique protein variants of SARS-CoV-2 is geo-location or demography-specific. However, the correlation between the demographic transmutability of the SARS-CoV-2 infection and mutations in various proteins remains unknown due to hidden symmetry/asymmetry in the occurrence of mutations. This study tracked how these mutations are emerging in SARS-CoV-2 proteins in six model countries and globally. In a geo-location, considering the mutations having a frequency of detection of at least 500 in each SARS-CoV-2 protein, we studied the country-wise percentage of invariant residues. Our data revealed that since October 2020, highly frequent mutations in SARS-CoV-2 have been observed mostly in the Open Reading Frame (ORF) 7b and ORF8, worldwide. No such highly frequent mutations in any of the SARS-CoV-2 proteins were found in the UK, India, and Brazil, which does not correlate with the degree of transmissibility of the virus in India and Brazil. However, we have found a signature that SARS-CoV-2 proteins were evolving at a higher rate, and considering global data, mutations are detected in the majority of the available amino acid locations. Fractal analysis of each protein's normalized factor time series showed a periodically aperiodic emergence of dominant variants for SARS-CoV-2 protein mutations across different countries. It was noticed that certain high-frequency variants have emerged in the last couple of months, and thus the emerging SARS-CoV-2 strains are expected to contain prevalent mutations in the ORF3a, membrane, and ORF8 proteins. In contrast to other beta-coronaviruses, SARS-CoV-2 variants have rapidly emerged based on demographically dependent mutations. Characterization of the periodically aperiodic nature of the demographic spread of SARS-CoV-2 variants in various countries can contribute to the identification of the origin of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Mutação , Incerteza
3.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35409240

RESUMO

The activity of the epithelial Na+ Channel (ENaC) is strongly dependent on the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2). PIP2 binds two distinct cationic clusters within the N termini of ß- and γ-ENaC subunits (ßN1 and γN2). The affinities of these sites were previously determined using short synthetic peptides, yet their role in sensitizing ENaC to changes in PIP2 levels in the cellular system is not well established. We addressed this question by comparing the effects of PIP2 depletion and recovery on ENaC channel activity and intracellular Na+ levels [Na+]i. We tested effects on ENaC activity with mutations to the PIP2 binding sites using the optogenetic system CIBN/CRY2-OCRL to selectively deplete PIP2. We monitored changes of [Na+]i by measuring the fluorescent Na+ indicator, CoroNa Green AM, and changes in channel activity by performing patch clamp electrophysiology. Whole cell patch clamp measurements showed a complete lack of response to PIP2 depletion and recovery in ENaC with mutations to ßN1 or γN2 or both sites, compared to wild type ENaC. Whereas mutant ßN1 also had no change in CoroNa Green fluorescence in response to PIP2 depletion, γN2 did have reduced [Na+]i, which was explained by having shorter CoroNa Green uptake and half-life. These results suggest that CoroNa Green measurements should be interpreted with caution. Importantly, the electrophysiology results show that the ßN1 and γN2 sites on ENaC are each necessary to permit maximal ENaC activity in the presence of PIP2.


Assuntos
Canais Epiteliais de Sódio , Fosfatidilinositol 4,5-Difosfato , Sítios de Ligação , Canais Epiteliais de Sódio/metabolismo , Optogenética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositóis/metabolismo , Sódio/metabolismo
4.
Molecules ; 26(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34684755

RESUMO

There have been more than 150 million confirmed cases of SARS-CoV-2 since the beginning of the pandemic in 2019. By June 2021, the mortality from such infections approached 3.9 million people. Despite the availability of a number of vaccines which provide protection against this virus, the evolution of new viral variants, inconsistent availability of the vaccine around the world, and vaccine hesitancy, in some countries, makes it unreasonable to rely on mass vaccination alone to combat this pandemic. Consequently, much effort is directed to identifying potential antiviral treatments. Marine brominated tyrosine alkaloids are recognized to have antiviral potential. We test here the antiviral capacity of fourteen marine brominated tyrosine alkaloids against five different target proteins from SARS-CoV-2, including main protease (Mpro) (PDB ID: 6lu7), spike glycoprotein (PDB ID: 6VYB), nucleocapsid phosphoprotein (PDB ID: 6VYO), membrane glycoprotein (PDB ID: 6M17), and non-structural protein 10 (nsp10) (PDB ID: 6W4H). These marine alkaloids, particularly the hexabrominated compound, fistularin-3, shows promising docking interactions with predicted binding affinities (S-score = -7.78, -7.65, -6.39, -6.28, -8.84 Kcal/mol) for the main protease (Mpro) (PDB ID: 6lu7), spike glycoprotein (PDB ID: 6VYB), nucleocapsid phosphoprotein (PDB ID: 6VYO), membrane glycoprotein (PDB ID: 6M17), and non-structural protein 10 (nsp10) (PDB ID: 6W4H), respectively, where it forms better interactions with the protein pockets than the native interaction. It also shows promising molecular dynamics, pharmacokinetics, and toxicity profiles. As such, further exploration of the antiviral properties of fistularin-3 against SARS-CoV-2 is merited.


Assuntos
Alcaloides/química , SARS-CoV-2/metabolismo , Alcaloides/isolamento & purificação , Alcaloides/uso terapêutico , Antivirais/química , Antivirais/metabolismo , Antivirais/uso terapêutico , Sítios de Ligação , COVID-19/virologia , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Halogenação , Humanos , Isoxazóis/química , Isoxazóis/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Relação Estrutura-Atividade , Tirosina/análogos & derivados , Tirosina/química , Tirosina/metabolismo , Tratamento Farmacológico da COVID-19
5.
Int J Mol Sci ; 21(20)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096770

RESUMO

Animal venoms are small natural mixtures highly enriched in bioactive components. They are known to target at least two important pharmacological classes of cell surface receptors: ion channels and G protein coupled receptors. Since sperm cells express a wide variety of ion channels and membrane receptors, required for the control of cell motility and acrosome reaction, two functions that are defective in infertility issues, animal venoms should contain interesting compounds capable of modulating these two essential physiological functions. Herein, we screened for bioactive compounds from the venom of the Egyptian black snake Walterinnesia aegyptia (Wa) that possess the property to activate sperm motility in vitro from male mice OF1. Using RP-HPLC and cation exchange chromatography, we identified a new toxin of 6389.89 Da (termed walterospermin) that activates sperm motility. Walterospermin was de novo sequenced using a combination of matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF/TOF MS/MS) and liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF MS/MS) following reduction, alkylation, and enzymatic proteolytic digestion with trypsin, chymotrypsin or V8 protease. The peptide is 57 amino acid residues long and contains three disulfide bridges and was found to be identical to the previously cloned Wa Kunitz-type protease inhibitor II (Wa Kln-II) sequence. Moreover, it has strong homology with several other hitherto cloned Elapidae and Viperidae snake toxins suggesting that it belongs to a family of compounds able to regulate sperm function. The synthetic peptide shows promising activation of sperm motility from a variety of species, including humans. Its fluorescently-labelled analog predominantly marks the flagellum, a localization in agreement with a receptor that controls motility function.


Assuntos
Venenos Elapídicos/química , Peptídeos/química , Peptídeos/farmacologia , Motilidade dos Espermatozoides/efeitos dos fármacos , Animais , Cromatografia por Troca Iônica , Dissulfetos/química , Egito , Venenos Elapídicos/farmacologia , Elapidae , Humanos , Macaca fascicularis , Masculino , Camundongos Endogâmicos , Peptídeos/síntese química , Peptídeos/isolamento & purificação , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Cauda do Espermatozoide/química , Cauda do Espermatozoide/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espermatozoides/fisiologia , Espectrometria de Massas em Tandem
6.
Electrophoresis ; 36(20): 2594-605, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26178575

RESUMO

Animal venoms are complex mixtures of more than 100 different compounds, including peptides, proteins, and nonprotein compounds such as lipids, carbohydrates, and metal ions. In addition, the existing compounds show a wide range of molecular weights and concentrations within these venoms, making separation and purification procedures quite tedious. Here, we analyzed for the first time by MS the advantages of using the OFFGEL technique in the separation of the venom components of the Egyptian Elapidae Walterinnesia aegyptia snake compared to two classical methods of separation, SEC and RP-HPLC. We demonstrate that OFFGEL separates venom components over a larger scale of fractions, preserve respectable resolution with regard to the presence of a given compound in adjacent fractions and allows the identification of a greater number of ions by MS (102 over 134 total ions). We also conclude that applying several separating techniques (SEC and RP-HPLC in addition to OFFGEL) provides complementary results in terms of ion detection (21 more for SEC and 22 more with RP-HPLC). As a result, we provide a complete list of 134 ions present in the venom of W. aegyptia by using all these techniques combined.


Assuntos
Fracionamento Químico/métodos , Elapidae , Eletroforese/métodos , Proteoma/análise , Venenos de Serpentes/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Proteômica
7.
Toxins (Basel) ; 16(1)2023 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-38251229

RESUMO

The venom derived from various sources of snakes represents a vast collection of predominantly protein-based toxins that exhibit a wide range of biological actions, including but not limited to inflammation, pain, cytotoxicity, cardiotoxicity, and neurotoxicity. The venom of a particular snake species is composed of several toxins, while the venoms of around 600 venomous snake species collectively encompass a substantial reservoir of pharmacologically intriguing compounds. Despite extensive research efforts, a significant portion of snake venoms remains uncharacterized. Recent findings have demonstrated the potential application of neurotoxins derived from snake venom in selectively targeting voltage-gated potassium channels (Kv). These neurotoxins include BPTI-Kunitz polypeptides, PLA2 neurotoxins, CRISPs, SVSPs, and various others. This study provides a comprehensive analysis of the existing literature on the significance of Kv channels in various tissues, highlighting their crucial role as proteins susceptible to modulation by diverse snake venoms. These toxins have demonstrated potential as valuable pharmacological resources and research tools for investigating the structural and functional characteristics of Kv channels.


Assuntos
Síndromes Neurotóxicas , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Humanos , Neurotoxinas/toxicidade , Venenos de Serpentes , Cardiotoxicidade
8.
JCI Insight ; 8(14)2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37279066

RESUMO

Stimulating the Gq-coupled P2Y2 receptor (P2ry2) lowers blood pressure. Global knockout of P2ry2 increases blood pressure. Vascular and renal mechanisms are believed to participate in P2ry2 effects on blood pressure. To isolate the role of the kidneys in P2ry2 effects on blood pressure and to reveal the molecular and cellular mechanisms of this action, we test here the necessity of the P2ry2 and the sufficiency of Gq-dependent signaling in renal principal cells to the regulation of the epithelial Na+ channel (ENaC), sodium excretion, and blood pressure. Activating P2ry2 in littermate controls but not principal cell-specific P2ry2-knockout mice decreased the activity of ENaC in renal tubules. Moreover, deletion of P2ry2 in principal cells abolished increases in sodium excretion in response to stimulation of P2ry2 and compromised the normal ability to excrete a sodium load. Consequently, principal cell-specific knockout of P2ry2 prevented decreases in blood pressure in response to P2ry2 stimulation in the deoxycorticosterone acetate-salt (DOCA-salt) model of hypertension. In wild-type littermate controls, such stimulation decreased blood pressure in this model of hypertension by promoting a natriuresis. Pharmacogenetic activation of Gq exclusively in principal cells using targeted expression of Gq-designer receptors exclusively activated by designer drugs and clozapine N-oxide decreased the activity of ENaC in renal tubules, promoting a natriuresis that lowered elevated blood pressure in the DOCA-salt model of hypertension. These findings demonstrate that the kidneys play a major role in decreasing blood pressure in response to P2ry2 activation and that inhibition of ENaC activity in response to P2ry2-mediated Gq signaling lowered blood pressure by increasing renal sodium excretion.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Camundongos , Animais , Pressão Sanguínea/fisiologia , Receptores Purinérgicos P2Y2/genética , Sódio/metabolismo , Hipertensão/metabolismo , Camundongos Knockout
9.
Comput Biol Med ; 147: 105738, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35777088

RESUMO

Over a span of two years ago, since the emergence of the first case of the novel coronavirus (SARS-CoV-2) in China, the pandemic has crossed borders causing serious health emergencies, immense economic crisis and impacting the daily life worldwide. Despite the discovery of numerous forms of precautionary vaccines along with other recently approved orally available drugs, yet effective antiviral therapeutics are necessarily needed to hunt this virus and its variants. Historically, naturally occurring chemicals have always been considered the primary source of beneficial medications. Considering the SARS-CoV-2 main protease (Mpro) as the duplicate key element of the viral cycle and its main target, in this paper, an extensive virtual screening for a focused chemical library of 15 batzelladine marine alkaloids, was virtually examined against SARS-CoV-2 main protease (Mpro) using an integrated set of modern computational tools including molecular docking (MDock), molecule dynamic (MD) simulations and structure-activity relationships (SARs) as well. The molecular docking predictions had disclosed four promising compounds including batzelladines H-I (8-9) and batzelladines F-G (6-7), respectively according to their prominent ligand-protein energy scores and relevant binding affinities with the (Mpro) pocket residues. The best two chemical hits, batzelladines H-I (8-9) were further investigated thermodynamically though studying their MD simulations at 100 ns, where they showed excellent stability within the accommodated (Mpro) pocket. Moreover, SARs studies imply the crucial roles of the fused tricyclic guanidinic moieties, its degree of unsaturation, position of the N-OH functionality and the length of the side chain as a spacer linking between two active sites, which disclosed fundamental structural and pharmacophoric features for efficient protein-ligand interaction. Such interesting findings are greatly highlighting further in vitro/vivo examinations regarding those marine natural products (MNPs) and their synthetic equivalents as promising antivirals.


Assuntos
Alcaloides , Tratamento Farmacológico da COVID-19 , Alcaloides/farmacologia , Antivirais/química , Proteases 3C de Coronavírus , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2 , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/química
10.
Front Pharmacol ; 13: 846992, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35662692

RESUMO

Voltage-gated sodium channel NaV1.8 regulates transmission of pain signals to the brain. While NaV1.8 has the potential to serve as a drug target, the molecular mechanisms that shape NaV1.8 gating are not completely understood, particularly mechanisms that couple activation to inactivation. Interactions between toxin producing animals and their predators provide a novel approach for investigating NaV structure-function relationships. Arizona bark scorpions produce Na+ channel toxins that initiate pain signaling. However, in predatory grasshopper mice, toxins inhibit NaV1.8 currents and block pain signals. A screen of synthetic peptide toxins predicted from bark scorpion venom showed that peptide NaTx36 inhibited Na+ current recorded from a recombinant grasshopper mouse NaV1.8 channel (OtNaV1.8). Toxin NaTx36 hyperpolarized OtNaV1.8 activation, steady-state fast inactivation, and slow inactivation. Mutagenesis revealed that the first gating charge in the domain I (DI) S4 voltage sensor and an acidic amino acid (E) in the DII SS2 - S6 pore loop are critical for the inhibitory effects of NaTx36. Computational modeling showed that a DI S1 - S2 asparagine (N) stabilizes the NaTx36 - OtNaV1.8 complex while residues in the DI S3 - S4 linker and S4 voltage sensor form electrostatic interactions that allow a toxin glutamine (Q) to contact the first S4 gating charge. Surprisingly, the models predicted that NaTx36 contacts amino acids in the DII S5 - SS1 pore loop instead of the SS2 - S6 loop; the DII SS2 - S6 loop motif (QVSE) alters the conformation of the DII S5 - SS1 pore loop, enhancing allosteric interactions between toxin and the DII S5 - SS1 pore loop. Few toxins have been identified that modify NaV1.8 gating. Moreover, few toxins have been described that modify sodium channel gating via the DI S4 voltage sensor. Thus, NaTx36 and OtNaV1.8 provide tools for investigating the structure-activity relationship between channel activation and inactivation gating, and the connection to alternative pain phenotypes.

11.
iScience ; 25(1): 103722, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35005527

RESUMO

SARS-CoV-2 is a newly identified coronavirus that causes the respiratory disease called coronavirus disease 2019 (COVID-19). With an urgent need for therapeutics, we lack a full understanding of the molecular basis of SARS-CoV-2-induced cellular damage and disease progression. Here, we conducted transcriptomic analysis of human PBMCs, identified significant changes in mitochondrial, ion channel, and protein quality-control gene products. SARS-CoV-2 proteins selectively target cellular organelle compartments, including the endoplasmic reticulum and mitochondria. M-protein, NSP6, ORF3A, ORF9C, and ORF10 bind to mitochondrial PTP complex components cyclophilin D, SPG-7, ANT, ATP synthase, and a previously undescribed CCDC58 (coiled-coil domain containing protein 58). Knockdown of CCDC58 or mPTP blocker cyclosporin A pretreatment enhances mitochondrial Ca2+ retention capacity and bioenergetics. SARS-CoV-2 infection exacerbates cardiomyocyte autophagy and promotes cell death that was suppressed by cyclosporin A treatment. Our findings reveal that SARS-CoV-2 viral proteins suppress cardiomyocyte mitochondrial function that disrupts cardiomyocyte Ca2+ cycling and cell viability.

12.
Int J Biol Macromol ; 222(Pt A): 972-993, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36174872

RESUMO

Several hypotheses have been presented on the origin of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) from its identification as the agent causing the current coronavirus disease 19 (COVID-19) pandemic. So far, no solid evidence has been found to support any hypothesis on the origin of this virus, and the issue continue to resurface over and over again. Here we have unfolded a pattern of distribution of several mutations in the SARS-CoV-2 proteins in 24 geo-locations across different continents. The results showed an evenly uneven distribution of the unique protein variants, distinct mutations, unique frequency of common conserved residues, and mutational residues across these 24 geo-locations. Furthermore, ample mutations were identified in the evolutionarily conserved invariant regions in the SARS-CoV-2 proteins across almost all geo-locations studied. This pattern of mutations potentially breaches the law of evolutionary conserved functional units of the beta-coronavirus genus. These mutations may lead to several novel SARS-CoV-2 variants with a high degree of transmissibility and virulence. A thorough investigation on the origin and characteristics of SARS-CoV-2 needs to be conducted in the interest of science and for the preparation of meeting the challenges of potential future pandemics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Pandemias , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química , Mutação
13.
PeerJ ; 10: e13136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35341060

RESUMO

Open reading frame 8 (ORF8) shows one of the highest levels of variability among accessory proteins in Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus Disease 2019 (COVID-19). It was previously reported that the ORF8 protein inhibits the presentation of viral antigens by the major histocompatibility complex class I (MHC-I), which interacts with host factors involved in pulmonary inflammation. The ORF8 protein assists SARS-CoV-2 in evading immunity and plays a role in SARS-CoV-2 replication. Among many contributing mutations, Q27STOP, a mutation in the ORF8 protein, defines the B.1.1.7 lineage of SARS-CoV-2, engendering the second wave of COVID-19. In the present study, 47 unique truncated ORF8 proteins (T-ORF8) with the Q27STOP mutations were identified among 49,055 available B.1.1.7 SARS-CoV-2 sequences. The results show that only one of the 47 T-ORF8 variants spread to over 57 geo-locations in North America, and other continents, which include Africa, Asia, Europe and South America. Based on various quantitative features, such as amino acid homology, polar/non-polar sequence homology, Shannon entropy conservation, and other physicochemical properties of all specific 47 T-ORF8 protein variants, nine possible T-ORF8 unique variants were defined. The question as to whether T-ORF8 variants function similarly to the wild type ORF8 is yet to be investigated. A positive response to the question could exacerbate future COVID-19 waves, necessitating severe containment measures.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Fases de Leitura Aberta/genética , Antígenos Virais/genética
14.
Toxins (Basel) ; 13(7)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209691

RESUMO

A global strategy, under the coordination of the World Health Organization, is being unfolded to reduce the impact of snakebite envenoming. One of the pillars of this strategy is to ensure safe and effective treatments. The mainstay in the therapy of snakebite envenoming is the administration of animal-derived antivenoms. In addition, new therapeutic options are being explored, including recombinant antibodies and natural and synthetic toxin inhibitors. In this review, snake venom toxins are classified in terms of their abundance and toxicity, and priority actions are being proposed in the search for snake venom metalloproteinase (SVMP), phospholipase A2 (PLA2), three-finger toxin (3FTx), and serine proteinase (SVSP) inhibitors. Natural inhibitors include compounds isolated from plants, animal sera, and mast cells, whereas synthetic inhibitors comprise a wide range of molecules of a variable chemical nature. Some of the most promising inhibitors, especially SVMP and PLA2 inhibitors, have been developed for other diseases and are being repurposed for snakebite envenoming. In addition, the search for drugs aimed at controlling endogenous processes generated in the course of envenoming is being pursued. The present review summarizes some of the most promising developments in this field and discusses issues that need to be considered for the effective translation of this knowledge to improve therapies for tackling snakebite envenoming.


Assuntos
Antivenenos/uso terapêutico , Terapia com Luz de Baixa Intensidade , Mordeduras de Serpentes/terapia , Venenos de Serpentes/antagonistas & inibidores , Animais , Ensaios Clínicos como Assunto , Humanos , Projetos de Pesquisa , Venenos de Serpentes/química , Venenos de Serpentes/toxicidade
15.
Front Physiol ; 12: 725782, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512393

RESUMO

The activity of the Epithelial Na+ Channel (ENaC) in renal principal cells (PC) fine-tunes sodium excretion and consequently, affects blood pressure. The Gs-adenylyl cyclase-cAMP signal transduction pathway is believed to play a central role in the normal control of ENaC activity in PCs. The current study quantifies the importance of this signaling pathway to the regulation of ENaC activity in vivo using a knock-in mouse that has conditional expression of Gs-DREADD (designer receptors exclusively activated by designer drugs; GsD) in renal PCs. The GsD mouse also contains a cAMP response element-luciferase reporter transgene for non-invasive bioluminescence monitoring of cAMP signaling. Clozapine N-oxide (CNO) was used to selectively and temporally stimulate GsD. Treatment with CNO significantly increased luciferase bioluminescence in the kidneys of PC-specific GsD but not control mice. CNO also significantly increased the activity of ENaC in principal cells in PC-specific GsD mice compared to untreated knock-in mice and CNO treated littermate controls. The cell permeable cAMP analog, 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate, significantly increased the activity and expression in the plasma membrane of recombinant ENaC expressed in CHO and COS-7 cells, respectively. Treatment of PC-specific GsD mice with CNO rapidly and significantly decreased urinary Na+ excretion compared to untreated PC-specific GsD mice and treated littermate controls. This decrease in Na+ excretion in response to CNO in PC-specific GsD mice was similar in magnitude and timing as that induced by the selective vasopressin receptor 2 agonist, desmopressin, in wild type mice. These findings demonstrate for the first time that targeted activation of Gs signaling exclusively in PCs is sufficient to increase ENaC activity and decrease dependent urinary Na+ excretion in live animals.

16.
Am J Trop Med Hyg ; 104(5): 1870-1876, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33819174

RESUMO

Envenomation and death resulting from snakebites represent a significant public health problem worldwide, particularly in tropical and subtropical regions. The WHO has defined snakebite as a neglected tropical health concern. Bites from Macrovipera lebetina obtusa usually cause life-threatening systemic hemodynamic disturbances, reduced functionality of the kidneys, and other serious symptoms, including hypotension shock, edema, and tissue necrosis, at the bite site. Herein, we highlight five cases of M. l. obtusa envenomation that presented with wide-ranging manifestations. Many recovered cases were left with long-term musculoskeletal disabilities. In a particular case, a 15-year-old male patient was envenomed in his palm by an 80-cm M. l. obtusa. Within 12 hours, swelling extended to near the shoulder. Fasciotomy was performed on the forearm and part of the upper arm of this patient. Symptoms of severe localized pain and swelling, dizziness, weakness, low blood pressure, and itching around the bite area were documented. The patient remained in the hospital for 13 days.


Assuntos
Antivenenos/uso terapêutico , Edema/tratamento farmacológico , Hipotensão/tratamento farmacológico , Necrose/tratamento farmacológico , Mordeduras de Serpentes/tratamento farmacológico , Venenos de Víboras/toxicidade , Viperidae/fisiologia , Adolescente , Adulto , Animais , Criança , Edema/diagnóstico , Edema/patologia , Edema/cirurgia , Feminino , Antagonistas dos Receptores Histamínicos/uso terapêutico , Humanos , Hipotensão/diagnóstico , Hipotensão/patologia , Hipotensão/cirurgia , Irã (Geográfico) , Loratadina/uso terapêutico , Masculino , Necrose/diagnóstico , Necrose/patologia , Necrose/cirurgia , Mordeduras de Serpentes/diagnóstico , Mordeduras de Serpentes/patologia , Mordeduras de Serpentes/cirurgia , Venenos de Víboras/administração & dosagem
17.
Oxid Med Cell Longev ; 2021: 7356266, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367466

RESUMO

Cerebral ischemia-reperfusion (I-R) transiently increased autophagy by producing excessively reactive oxygen species (ROS); on the other hand, activated autophagy would remove ROS-damaged mitochondria and proteins, which led to cell survival. However, the regulation mechanism of autophagy activity during cerebral I-R is still unclear. In this study, we found that deficiency of the TRPM2 channel which is a ROS sensor significantly decreased I-R-induced neuronal damage. I-R transiently increased autophagy activity both in vitro and in vivo. More importantly, TRPM2 deficiency decreased I-R-induced neurological deficit score and infarct volume. Interestingly, our results indicated that TRPM2 deficiency could further activate AMPK rather than Beclin1 activity, suggesting that TRPM2 inhibits autophagy by regulating the AMPK/mTOR pathway in I-R. In conclusion, our study reveals that ROS-activated TRPM2 inhibits autophagy by downregulating the AMPK/mTOR pathway, which results in neuronal death induced by cerebral I-R, further supporting that TRPM2 might be a potential drug target for cerebral ischemic injury therapy.


Assuntos
Autofagia , Isquemia Encefálica/prevenção & controle , Neurônios/fisiologia , Fármacos Neuroprotetores/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Canais de Cátion TRPM/fisiologia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Apoptose , Isquemia Encefálica/etiologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Estresse Oxidativo , Ratos , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
18.
Biomolecules ; 11(3)2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808721

RESUMO

The huge global expansion of the COVID-19 pandemic caused by the novel SARS-corona virus-2 is an extraordinary public health emergency. The unavailability of specific treatment against SARS-CoV-2 infection necessitates the focus of all scientists in this direction. The reported antiviral activities of guanidine alkaloids encouraged us to run a comprehensive in silico binding affinity of fifteen guanidine alkaloids against five different proteins of SARS-CoV-2, which we investigated. The investigated proteins are COVID-19 main protease (Mpro) (PDB ID: 6lu7), spike glycoprotein (PDB ID: 6VYB), nucleocapsid phosphoprotein (PDB ID: 6VYO), membrane glycoprotein (PDB ID: 6M17), and a non-structural protein (nsp10) (PDB ID: 6W4H). The binding energies for all tested compounds indicated promising binding affinities. A noticeable superiority for the pentacyclic alkaloids particularly, crambescidin 786 (5) and crambescidin 826 (13) has been observed. Compound 5 exhibited very good binding affinities against Mpro (ΔG = -8.05 kcal/mol), nucleocapsid phosphoprotein (ΔG = -6.49 kcal/mol), and nsp10 (ΔG = -9.06 kcal/mol). Compound 13 showed promising binding affinities against Mpro (ΔG = -7.99 kcal/mol), spike glycoproteins (ΔG = -6.95 kcal/mol), and nucleocapsid phosphoprotein (ΔG = -8.01 kcal/mol). Such promising activities might be attributed to the long ω-fatty acid chain, which may play a vital role in binding within the active sites. The correlation of c Log P with free binding energies has been calculated. Furthermore, the SAR of the active compounds has been clarified. The Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) studies were carried out in silico for the 15 compounds; most examined compounds showed optimal to good range levels of ADMET aqueous solubility, intestinal absorption and being unable to pass blood brain barrier (BBB), non-inhibitors of CYP2D6, non-hepatotoxic, and bind plasma protein with a percentage less than 90%. The toxicity of the tested compounds was screened in silico against five models (FDA rodent carcinogenicity, carcinogenic potency TD50, rat maximum tolerated dose, rat oral LD50, and rat chronic lowest observed adverse effect level (LOAEL)). All compounds showed expected low toxicity against the tested models. Molecular dynamic (MD) simulations were also carried out to confirm the stable binding interactions of the most promising compounds, 5 and 13, with their targets. In conclusion, the examined 15 alkaloids specially 5 and 13 showed promising docking, ADMET, toxicity and MD results which open the door for further investigations for them against SARS-CoV-2.


Assuntos
Alcaloides/química , Antivirais/química , Proteínas do Nucleocapsídeo de Coronavírus/química , Poríferos/química , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/química , Animais , Antivirais/farmacologia , Antivirais/toxicidade , Barreira Hematoencefálica , Cristalografia por Raios X , Ligantes , Glicoproteínas de Membrana/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fosfoproteínas/química , Inibidores de Proteases/química , Ratos , Software , Proteases Virais/química
19.
Sci Rep ; 11(1): 14600, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272444

RESUMO

Activity of the Epithelial Na+ Channel (ENaC) in the distal nephron fine-tunes renal sodium excretion. Appropriate sodium excretion is a key factor in the regulation of blood pressure. Consequently, abnormalities in ENaC function can cause hypertension. Casein Kinase II (CKII) phosphorylates ENaC. The CKII phosphorylation site in ENaC resides within a canonical "anchor" ankyrin binding motif. CKII-dependent phosphorylation of ENaC is necessary and sufficient to increase channel activity and is thought to influence channel trafficking in a manner that increases activity. We test here the hypothesis that phosphorylation of ENaC by CKII within an anchor motif is necessary for ankyrin-3 (Ank-3) regulation of the channel, which is required for normal channel locale and function, and the proper regulation of renal sodium excretion. This was addressed using a fluorescence imaging strategy combining total internal reflection fluorescence (TIRF) microscopy with fluorescence recovery after photobleaching (FRAP) to quantify ENaC expression in the plasma membrane in living cells; and electrophysiology to quantify ENaC activity in split-open collecting ducts from principal cell-specific Ank-3 knockout mice. Sodium excretion studies also were performed in parallel in this knockout mouse. In addition, we substituted a key serine residue in the consensus CKII site in ß-ENaC with alanine to abrogate phosphorylation and disrupt the anchor motif. Findings show that disrupting CKII signaling decreases ENaC activity by decreasing expression in the plasma membrane. In the principal cell-specific Ank-3 KO mouse, ENaC activity and sodium excretion were significantly decreased and increased, respectively. These results are consistent with CKII phosphorylation of ENaC functioning as a "switch" that favors Ank-3 binding to increase channel activity.


Assuntos
Anquirinas/fisiologia , Caseína Quinase II/fisiologia , Canais Epiteliais de Sódio/fisiologia , Substituição de Aminoácidos , Animais , Anquirinas/genética , Transporte Biológico , Células CHO , Células COS , Chlorocebus aethiops , Cricetulus , Feminino , Hipertensão/etiologia , Masculino , Proteínas de Membrana Transportadoras/fisiologia , Camundongos , Camundongos Knockout , Néfrons/metabolismo , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Sódio/metabolismo
20.
Toxins (Basel) ; 13(7)2021 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-34357973

RESUMO

The voltage-gated sodium channel Nav1.8 is linked to neuropathic and inflammatory pain, highlighting the potential to serve as a drug target. However, the biophysical mechanisms that regulate Nav1.8 activation and inactivation gating are not completely understood. Progress has been hindered by a lack of biochemical tools for examining Nav1.8 gating mechanisms. Arizona bark scorpion (Centruroides sculpturatus) venom proteins inhibit Nav1.8 and block pain in grasshopper mice (Onychomys torridus). These proteins provide tools for examining Nav1.8 structure-activity relationships. To identify proteins that inhibit Nav1.8 activity, venom samples were fractioned using liquid chromatography (reversed-phase and ion exchange). A recombinant Nav1.8 clone expressed in ND7/23 cells was used to identify subfractions that inhibited Nav1.8 Na+ current. Mass-spectrometry-based bottom-up proteomic analyses identified unique peptides from inhibitory subfractions. A search of the peptides against the AZ bark scorpion venom gland transcriptome revealed four novel proteins between 40 and 60% conserved with venom proteins from scorpions in four genera (Centruroides, Parabuthus, Androctonus, and Tityus). Ranging from 63 to 82 amino acids, each primary structure includes eight cysteines and a "CXCE" motif, where X = an aromatic residue (tryptophan, tyrosine, or phenylalanine). Electrophysiology data demonstrated that the inhibitory effects of bioactive subfractions can be removed by hyperpolarizing the channels, suggesting that proteins may function as gating modifiers as opposed to pore blockers.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Venenos de Escorpião/farmacologia , Escorpiões , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Arizona , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Dor , Peptídeos , Casca de Planta , Proteômica , Escorpiões/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA