Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Entropy (Basel) ; 24(4)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35455201

RESUMO

Digital Signature using Self-Image signing is introduced in this paper. This technique is used to verify the integrity and originality of images transmitted over insecure channels. In order to protect the user's medical images from changing or modifying, the images must be signed. The proposed approach uses the Discrete Wavelet Transform to subdivide a picture into four bands and the Discrete Cosine Transform DCT is used to embed a mark from each sub-band to another sub-band of DWT according to a determined algorithm. To increase the security, the marked image is then encrypted using Double Random Phase Encryption before transmission over the communication channel. By verifying the presence of the mark, the authority of the sender is verified at the receiver. Authorized users' scores should, in theory, always be higher than illegal users' scores. If this is the case, a single threshold might be used to distinguish between authorized and unauthorized users by separating the two sets of scores. The results are compared to those obtained using an approach that does not employ DWT.

2.
Heliyon ; 10(7): e27860, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38689959

RESUMO

Time series forecasting across different domains has received massive attention as it eases intelligent decision-making activities. Recurrent neural networks and various deep learning algorithms have been applied to modeling and forecasting multivariate time series data. Due to intricate non-linear patterns and significant variations in the randomness of characteristics across various categories of real-world time series data, achieving effectiveness and robustness simultaneously poses a considerable challenge for specific deep-learning models. We have proposed a novel prediction framework with a multi-phase feature selection technique, a long short-term memory-based autoencoder, and a temporal convolution-based autoencoder to fill this gap. The multi-phase feature selection is applied to retrieve the optimal feature selection and optimal lag window length for different features. Moreover, the customized stacked autoencoder strategy is employed in the model. The first autoencoder is used to resolve the random weight initialization problem. Additionally, the second autoencoder models the temporal relation between non-linear correlated features with convolution networks and recurrent neural networks. Finally, the model's ability to generalize, predict accurately, and perform effectively is validated through experimentation with three distinct real-world time series datasets. In this study, we conducted experiments on three real-world datasets: Energy Appliances, Beijing PM2.5 Concentration, and Solar Radiation. The Energy Appliances dataset consists of 29 attributes with a training size of 15,464 instances and a testing size of 4239 instances. For the Beijing PM2.5 Concentration dataset, there are 18 attributes, with 34,952 instances in the training set and 8760 instances in the testing set. The Solar Radiation dataset comprises 11 attributes, with 22,857 instances in the training set and 9797 instances in the testing set. The experimental setup involved evaluating the performance of forecasting models using two distinct error measures: root mean square error and mean absolute error. To ensure robust evaluation, the errors were calculated at the identical scale of the data. The results of the experiments demonstrate the superiority of the proposed model compared to existing models, as evidenced by significant advantages in various metrics such as mean squared error and mean absolute error. For PM2.5 air quality data, the proposed model's mean absolute error is 7.51 over 12.45, about ∼40% improvement. Similarly, the mean square error for the dataset is improved from 23.75 to 11.62, which is ∼51%of improvement. For the solar radiation dataset, the proposed model resulted in ∼34.7% improvement in means squared error and ∼75% in mean absolute error. The recommended framework demonstrates outstanding capabilities in generalization and outperforms datasets spanning multiple indigenous domains.

3.
Heliyon ; 10(7): e28967, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601589

RESUMO

Plant diseases annually cause damage and loss of much of the crop, if not its complete destruction, and this constitutes a significant challenge for farm owners, governments, and consumers alike. Therefore, identifying and classifying diseases at an early stage is very important in order to sustain local and global food security. In this research, we designed a new method to identify plant diseases by combining transfer learning and Gravitational Search Algorithm (GSA). Two state-of-the-art pretrained models have been adopted for extracting features in this study, which are MobileNetV2 and ResNe50V2. Multilayer feature extraction is applied in this study to ensure representations of plant leaves from different levels of abstraction for precise classification. These features are then concatenated and passed to GSA for optimizing them. Finally, optimized features are passed to Multinomial Logistic Regression (MLR) for final classification. This integration is essential for categorizing 18 different types of infected and healthy leaf samples. The performance of our approach is strengthened by a comparative analysis that incorporates features optimized by the Genetic Algorithm (GA). Additionally, the MLR algorithm is contrasted with K-Nearest Neighbors (KNN). The empirical findings indicate that our model, which has been refined using GSA, achieves very high levels of precision. Specifically, the average precision for MLR is 99.2%, while for KNN it is 98.6%. The resulting results significantly exceed those achieved with GA-optimized features, thereby highlighting the superiority of our suggested strategy. One important result of our study is that we were able to decrease the number of features by more than 50%. This reduction greatly reduces the processing requirements without sacrificing the quality of the diagnosis. This work presents a robust and efficient approach to the early detection of plant diseases. The work demonstrates the utilization of sophisticated computational methods in agriculture, enabling the development of novel data-driven strategies for plant health management, therefore enhancing worldwide food security.

4.
Healthcare (Basel) ; 11(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37297734

RESUMO

Anxiety is a common mental health issue that affects a significant portion of the global population and can lead to severe physical and psychological consequences. The proposed system aims to provide an objective and reliable method for the early detection of anxiety levels by using patients' physical symptoms as input variables. This paper introduces an expert system utilizing a fuzzy inference system (FIS) to predict anxiety levels. The system is designed to address anxiety's complex and uncertain nature by utilizing a comprehensive set of input variables and fuzzy logic techniques. It is based on a set of rules that represent medical knowledge of anxiety disorders, making it a valuable tool for clinicians in diagnosing and treating these disorders. The system was tested on real datasets, demonstrating high accuracy in the prediction of anxiety levels. The FIS-based expert system offers a powerful approach to cope with imprecision and uncertainty and can potentially assist in addressing the lack of effective remedies for anxiety disorders. The research primarily focused on Asian countries, such as Pakistan, and the system achieved an accuracy of 87%, which is noteworthy.

5.
Healthcare (Basel) ; 10(12)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36553864

RESUMO

Brain tumors (BTs) are an uncommon but fatal kind of cancer. Therefore, the development of computer-aided diagnosis (CAD) systems for classifying brain tumors in magnetic resonance imaging (MRI) has been the subject of many research papers so far. However, research in this sector is still in its early stage. The ultimate goal of this research is to develop a lightweight effective implementation of the U-Net deep network for use in performing exact real-time segmentation. Moreover, a simplified deep convolutional neural network (DCNN) architecture for the BT classification is presented for automatic feature extraction and classification of the segmented regions of interest (ROIs). Five convolutional layers, rectified linear unit, normalization, and max-pooling layers make up the DCNN's proposed simplified architecture. The introduced method was verified on multimodal brain tumor segmentation (BRATS 2015) datasets. Our experimental results on BRATS 2015 acquired Dice similarity coefficient (DSC) scores, sensitivity, and classification accuracy of 88.8%, 89.4%, and 88.6% for high-grade gliomas. When it comes to segmenting BRATS 2015 BT images, the performance of our proposed CAD framework is on par with existing state-of-the-art methods. However, the accuracy achieved in this study for the classification of BT images has improved upon the accuracy reported in prior studies. Image classification accuracy for BRATS 2015 BT has been improved from 88% to 88.6%.

6.
Diagnostics (Basel) ; 12(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36292230

RESUMO

Brain tumors (BTs) are deadly diseases that can strike people of every age, all over the world. Every year, thousands of people die of brain tumors. Brain-related diagnoses require caution, and even the smallest error in diagnosis can have negative repercussions. Medical errors in brain tumor diagnosis are common and frequently result in higher patient mortality rates. Magnetic resonance imaging (MRI) is widely used for tumor evaluation and detection. However, MRI generates large amounts of data, making manual segmentation difficult and laborious work, limiting the use of accurate measurements in clinical practice. As a result, automated and dependable segmentation methods are required. Automatic segmentation and early detection of brain tumors are difficult tasks in computer vision due to their high spatial and structural variability. Therefore, early diagnosis or detection and treatment are critical. Various traditional Machine learning (ML) techniques have been used to detect various types of brain tumors. The main issue with these models is that the features were manually extracted. To address the aforementioned insightful issues, this paper presents a hybrid deep transfer learning (GN-AlexNet) model of BT tri-classification (pituitary, meningioma, and glioma). The proposed model combines GoogleNet architecture with the AlexNet model by removing the five layers of GoogleNet and adding ten layers of the AlexNet model, which extracts features and classifies them automatically. On the same CE-MRI dataset, the proposed model was compared to transfer learning techniques (VGG-16, AlexNet, SqeezNet, ResNet, and MobileNet-V2) and ML/DL. The proposed model outperformed the current methods in terms of accuracy and sensitivity (accuracy of 99.51% and sensitivity of 98.90%).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA