Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Br J Psychiatry ; 218(3): 135-142, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-31647041

RESUMO

BACKGROUND: There is strong public belief that polyunsaturated fats protect against and ameliorate depression and anxiety. AIMS: To assess effects of increasing omega-3, omega-6 or total polyunsaturated fat on prevention and treatment of depression and anxiety symptoms. METHOD: We searched widely (Central, Medline and EMBASE to April 2017, trial registers to September 2016, ongoing trials updated to August 2019), including trials of adults with or without depression or anxiety, randomised to increased omega-3, omega-6 or total polyunsaturated fat for ≥24 weeks, excluding multifactorial interventions. Inclusion, data extraction and risk of bias were assessed independently in duplicate, and authors contacted for further data. We used random-effects meta-analysis, sensitivity analyses, subgrouping and Grading of Recommendations, Assessment, Development and Evaluations (GRADE) assessment. RESULTS: We included 31 trials assessing effects of long-chain omega-3 (n = 41 470), one of alpha-linolenic acid (n = 4837), one of total polyunsaturated fat (n = 4997) and none of omega-6. Meta-analysis suggested that increasing long-chain omega-3 probably has little or no effect on risk of depression symptoms (risk ratio 1.01, 95% CI 0.92-1.10, I2 = 0%, median dose 0.95 g/d, duration 12 months) or anxiety symptoms (standardised mean difference 0.15, 95% CI 0.05-0.26, I2 = 0%, median dose 1.1 g/d, duration 6 months; both moderate-quality evidence). Evidence of effects on depression severity and remission in existing depression were unclear (very-low-quality evidence). Results did not differ by risk of bias, omega-3 dose, duration or nutrients replaced. Increasing alpha-linolenic acid by 2 g/d may increase risk of depression symptoms very slightly over 40 months (number needed to harm, 1000). CONCLUSIONS: Long-chain omega-3 supplementation probably has little or no effect in preventing depression or anxiety symptoms. DECLARATION OF INTEREST: L.H. and A.A. were funded to attend the World Health Organization Nutrition Guidance Expert Advisory Group (NUGAG) Subgroup on Diet and Health meetings and present review results. The authors report no other conflicts of interest.


Assuntos
Doenças Cardiovasculares , Depressão , Adulto , Ansiedade/prevenção & controle , Causas de Morte , Depressão/prevenção & controle , Humanos , Prevenção Primária , Ensaios Clínicos Controlados Aleatórios como Assunto , Prevenção Secundária
2.
Eur J Nutr ; 60(5): 2293-2316, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33084958

RESUMO

BACKGROUND AND AIM: Effects of long-chain omega-3 (LCn3) and omega-6 fatty acids on prevention and treatment of inflammatory bowel diseases (IBD, including Crohn's Disease, CD and ulcerative colitis, UC), and inflammation are unclear. We systematically reviewed long-term effects of omega-3, omega-6 and total polyunsaturated fats (PUFA) on IBD diagnosis, relapse, severity, pharmacotherapy, quality of life and key inflammatory markers. METHODS: We searched Medline, Embase, Cochrane CENTRAL, and trials registries, including RCTs in adults with or without IBD comparing higher with lower omega-3, omega-6 and/or total PUFA intake for ≥ 24 weeks that assessed IBD-specific outcomes or inflammatory biomarkers. RESULTS: We included 83 RCTs (41,751 participants), of which 13 recruited participants with IBD. Increasing LCn3 may reduce risk of IBD relapse (RR 0.85, 95% CI 0.72-1.01) and IBD worsening (RR 0.85, 95% CI 0.71-1.03), and reduce erythrocyte sedimentation rate (ESR, SMD - 0.23, 95% CI - 0.44 to - 0.01), but may increase IBD diagnosis risk (RR 1.10, 95% CI 0.63-1.92), and faecal calprotectin, a specific inflammatory marker for IBD (MD 16.1 µg/g, 95% CI - 37.6 to 69.8, all low-quality evidence). Outcomes for alpha-linolenic acid, omega-6 and total PUFA were sparse, but suggested little or no effect where data were available. CONCLUSION: This is the most comprehensive meta-analysis of RCTs investigating long-term effects of omega-3, omega-6 and total PUFA on IBD and inflammatory markers. Our findings suggest that supplementation with PUFAs has little or no effect on prevention or treatment of IBD and provides little support for modification of long-term inflammatory status.


Assuntos
Ácidos Graxos Ômega-3 , Doenças Inflamatórias Intestinais , Adulto , Biomarcadores , Humanos , Inflamação , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto
3.
Br J Cancer ; 122(8): 1260-1270, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32114592

RESUMO

BACKGROUND: The relationship between long-chain omega-3 (LCn3), alpha-linolenic acid (ALA), omega-6 and total polyunsaturated fatty acid (PUFA) intakes and cancer risk is unclear. METHODS: We searched Medline, Embase, CENTRAL and trials registries for RCTs comparing higher with lower LCn3, ALA, omega-6 and/or total PUFA, that assessed cancers over ≥12 months. Random-effects meta-analyses, sensitivity analyses, subgrouping, risk of bias and GRADE were used. RESULTS: We included 47 RCTs (108,194 participants). Increasing LCn3 has little or no effect on cancer diagnosis (RR1.02, 95% CI 0.98-1.07), cancer death (RR0.97, 95% CI 0.90-1.06) or breast cancer diagnosis (RR1.03, 95% CI 0.89-1.20); increasing ALA has little or no effect on cancer death (all high/moderate-quality evidence). Increasing LCn3 (NNTH 334, RR1.10, 95% CI 0.97-1.24) and ALA (NNTH 334, RR1.30, 95% CI 0.72-2.32) may slightly increase prostate cancer risk; increasing total PUFA may slightly increase risk of cancer diagnosis (NNTH 125, RR1.19, 95% CI 0.99-1.42) and cancer death (NNTH 500, RR1.10, 95% CI 0.48-2.49) but total PUFA doses were very high in some trials. CONCLUSIONS: The most extensive systematic review to assess the effects of increasing PUFAs on cancer risk found increasing total PUFA may very slightly increase cancer risk, offset by small protective effects on cardiovascular diseases.


Assuntos
Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-6/administração & dosagem , Ácidos Graxos Insaturados/administração & dosagem , Neoplasias/epidemiologia , Humanos , Incidência , Ensaios Clínicos Controlados Aleatórios como Assunto , Risco , Ácido alfa-Linolênico/administração & dosagem
4.
Cochrane Database Syst Rev ; 8: CD011737, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32827219

RESUMO

BACKGROUND: Reducing saturated fat reduces serum cholesterol, but effects on other intermediate outcomes may be less clear. Additionally, it is unclear whether the energy from saturated fats eliminated from the diet are more helpfully replaced by polyunsaturated fats, monounsaturated fats, carbohydrate or protein. OBJECTIVES: To assess the effect of reducing saturated fat intake and replacing it with carbohydrate (CHO), polyunsaturated (PUFA), monounsaturated fat (MUFA) and/or protein on mortality and cardiovascular morbidity, using all available randomised clinical trials. SEARCH METHODS: We updated our searches of the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (Ovid) and Embase (Ovid) on 15 October 2019, and searched Clinicaltrials.gov and WHO International Clinical Trials Registry Platform (ICTRP) on 17 October 2019. SELECTION CRITERIA: Included trials fulfilled the following criteria: 1) randomised; 2) intention to reduce saturated fat intake OR intention to alter dietary fats and achieving a reduction in saturated fat; 3) compared with higher saturated fat intake or usual diet; 4) not multifactorial; 5) in adult humans with or without cardiovascular disease (but not acutely ill, pregnant or breastfeeding); 6) intervention duration at least 24 months; 7) mortality or cardiovascular morbidity data available. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed inclusion, extracted study data and assessed risk of bias. We performed random-effects meta-analyses, meta-regression, subgrouping, sensitivity analyses, funnel plots and GRADE assessment. MAIN RESULTS: We included 15 randomised controlled trials (RCTs) (16 comparisons, 56,675 participants), that used a variety of interventions from providing all food to advice on reducing saturated fat. The included long-term trials suggested that reducing dietary saturated fat reduced the risk of combined cardiovascular events by 17% (risk ratio (RR) 0.83; 95% confidence interval (CI) 0.70 to 0.98, 12 trials, 53,758 participants of whom 8% had a cardiovascular event, I² = 67%, GRADE moderate-quality evidence). Meta-regression suggested that greater reductions in saturated fat (reflected in greater reductions in serum cholesterol) resulted in greater reductions in risk of CVD events, explaining most heterogeneity between trials. The number needed to treat for an additional beneficial outcome (NNTB) was 56 in primary prevention trials, so 56 people need to reduce their saturated fat intake for ~four years for one person to avoid experiencing a CVD event. In secondary prevention trials, the NNTB was 53. Subgrouping did not suggest significant differences between replacement of saturated fat calories with polyunsaturated fat or carbohydrate, and data on replacement with monounsaturated fat and protein was very limited. We found little or no effect of reducing saturated fat on all-cause mortality (RR 0.96; 95% CI 0.90 to 1.03; 11 trials, 55,858 participants) or cardiovascular mortality (RR 0.95; 95% CI 0.80 to 1.12, 10 trials, 53,421 participants), both with GRADE moderate-quality evidence. There was little or no effect of reducing saturated fats on non-fatal myocardial infarction (RR 0.97, 95% CI 0.87 to 1.07) or CHD mortality (RR 0.97, 95% CI 0.82 to 1.16, both low-quality evidence), but effects on total (fatal or non-fatal) myocardial infarction, stroke and CHD events (fatal or non-fatal) were all unclear as the evidence was of very low quality. There was little or no effect on cancer mortality, cancer diagnoses, diabetes diagnosis, HDL cholesterol, serum triglycerides or blood pressure, and small reductions in weight, serum total cholesterol, LDL cholesterol and BMI. There was no evidence of harmful effects of reducing saturated fat intakes. AUTHORS' CONCLUSIONS: The findings of this updated review suggest that reducing saturated fat intake for at least two years causes a potentially important reduction in combined cardiovascular events. Replacing the energy from saturated fat with polyunsaturated fat or carbohydrate appear to be useful strategies, while effects of replacement with monounsaturated fat are unclear. The reduction in combined cardiovascular events resulting from reducing saturated fat did not alter by study duration, sex or baseline level of cardiovascular risk, but greater reduction in saturated fat caused greater reductions in cardiovascular events.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Gorduras na Dieta/administração & dosagem , Ácidos Graxos/administração & dosagem , Adulto , Doenças Cardiovasculares/mortalidade , Causas de Morte , Colesterol/sangue , Carboidratos da Dieta/administração & dosagem , Gorduras Insaturadas na Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Ingestão de Energia , Feminino , Humanos , Masculino , Infarto do Miocárdio/mortalidade , Infarto do Miocárdio/prevenção & controle , Ensaios Clínicos Controlados Aleatórios como Assunto , Acidente Vascular Cerebral/prevenção & controle
5.
Cochrane Database Syst Rev ; 6: CD013636, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32476140

RESUMO

BACKGROUND: The ideal proportion of energy from fat in our food and its relation to body weight is not clear. In order to prevent overweight and obesity in the general population, we need to understand the relationship between the proportion of energy from fat and resulting weight and body fatness in the general population. OBJECTIVES: To assess the effects of proportion of energy intake from fat on measures of body fatness (including body weight, waist circumference, percentage body fat and body mass index) in people not aiming to lose weight, using all appropriate randomised controlled trials (RCTs) of at least six months duration. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, Clinicaltrials.gov and the WHO International Clinical Trials Registry Platform (ICTRP) to October 2019. We did not limit the search by language. SELECTION CRITERIA: Trials fulfilled the following criteria: 1) randomised intervention trial, 2) included adults aged at least 18 years, 3) randomised to a lower fat versus higher fat diet, without the intention to reduce weight in any participants, 4) not multifactorial and 5) assessed a measure of weight or body fatness after at least six months. We duplicated inclusion decisions and resolved disagreement by discussion or referral to a third party. DATA COLLECTION AND ANALYSIS: We extracted data on the population, intervention, control and outcome measures in duplicate. We extracted measures of body fatness (body weight, BMI, percentage body fat and waist circumference) independently in duplicate at all available time points. We performed random-effects meta-analyses, meta-regression, subgrouping, sensitivity, funnel plot analyses and GRADE assessment. MAIN RESULTS: We included 37 RCTs (57,079 participants). There is consistent high-quality evidence from RCTs that reducing total fat intake results in small reductions in body fatness; this was seen in almost all included studies and was highly resistant to sensitivity analyses (GRADE high-consistency evidence, not downgraded). The effect of eating less fat (compared with higher fat intake) is a mean body weight reduction of 1.4 kg (95% confidence interval (CI) -1.7 to -1.1 kg, in 53,875 participants from 26 RCTs, I2 = 75%). The heterogeneity was explained in subgrouping and meta-regression. These suggested that greater weight loss results from greater fat reductions in people with lower fat intake at baseline, and people with higher body mass index (BMI) at baseline. The size of the effect on weight does not alter over time and is mirrored by reductions in BMI (MD -0.5 kg/m2, 95% CI -0.6 to -0.3, 46,539 participants in 14 trials, I2 = 21%), waist circumference (MD -0.5 cm, 95% CI -0.7 to -0.2, 16,620 participants in 3 trials; I2 = 21%), and percentage body fat (MD -0.3% body fat, 95% CI -0.6 to 0.00, P = 0.05, in 2350 participants in 2 trials; I2 = 0%). There was no suggestion of harms associated with low fat diets that might mitigate any benefits on body fatness. The reduction in body weight was reflected in small reductions in LDL (-0.13 mmol/L, 95% CI -0.21 to -0.05), and total cholesterol (-0.23 mmol/L, 95% CI -0.32 to -0.14), with little or no effect on HDL cholesterol (-0.02 mmol/L, 95% CI -0.03 to 0.00), triglycerides (0.01 mmol/L, 95% CI -0.05 to 0.07), systolic (-0.75 mmHg, 95% CI -1.42 to -0.07) or diastolic blood pressure(-0.52 mmHg, 95% CI -0.95 to -0.09), all GRADE high-consistency evidence or quality of life (0.04, 95% CI 0.01 to 0.07, on a scale of 0 to 10, GRADE low-consistency evidence). AUTHORS' CONCLUSIONS: Trials where participants were randomised to a lower fat intake versus a higher fat intake, but with no intention to reduce weight, showed a consistent, stable but small effect of low fat intake on body fatness: slightly lower weight, BMI, waist circumference and percentage body fat compared with higher fat arms. Greater fat reduction, lower baseline fat intake and higher baseline BMI were all associated with greater reductions in weight. There was no evidence of harm to serum lipids, blood pressure or quality of life, but rather of small benefits or no effect.


Assuntos
Tecido Adiposo , Adiposidade , Gorduras na Dieta/administração & dosagem , Ingestão de Energia , Adulto , Pressão Sanguínea , Índice de Massa Corporal , Peso Corporal , Colesterol/sangue , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Dieta com Restrição de Gorduras , Dieta Rica em Proteínas , Humanos , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Triglicerídeos/sangue , Circunferência da Cintura
6.
Cochrane Database Syst Rev ; 5: CD011737, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32428300

RESUMO

BACKGROUND: Reducing saturated fat reduces serum cholesterol, but effects on other intermediate outcomes may be less clear. Additionally, it is unclear whether the energy from saturated fats eliminated from the diet are more helpfully replaced by polyunsaturated fats, monounsaturated fats, carbohydrate or protein. OBJECTIVES: To assess the effect of reducing saturated fat intake and replacing it with carbohydrate (CHO), polyunsaturated (PUFA), monounsaturated fat (MUFA) and/or protein on mortality and cardiovascular morbidity, using all available randomised clinical trials. SEARCH METHODS: We updated our searches of the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (Ovid) and Embase (Ovid) on 15 October 2019, and searched Clinicaltrials.gov and WHO International Clinical Trials Registry Platform (ICTRP) on 17 October 2019. SELECTION CRITERIA: Included trials fulfilled the following criteria: 1) randomised; 2) intention to reduce saturated fat intake OR intention to alter dietary fats and achieving a reduction in saturated fat; 3) compared with higher saturated fat intake or usual diet; 4) not multifactorial; 5) in adult humans with or without cardiovascular disease (but not acutely ill, pregnant or breastfeeding); 6) intervention duration at least 24 months; 7) mortality or cardiovascular morbidity data available. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed inclusion, extracted study data and assessed risk of bias. We performed random-effects meta-analyses, meta-regression, subgrouping, sensitivity analyses, funnel plots and GRADE assessment. MAIN RESULTS: We included 15 randomised controlled trials (RCTs) (16 comparisons, ~59,000 participants), that used a variety of interventions from providing all food to advice on reducing saturated fat. The included long-term trials suggested that reducing dietary saturated fat reduced the risk of combined cardiovascular events by 21% (risk ratio (RR) 0.79; 95% confidence interval (CI) 0.66 to 0.93, 11 trials, 53,300 participants of whom 8% had a cardiovascular event, I² = 65%, GRADE moderate-quality evidence). Meta-regression suggested that greater reductions in saturated fat (reflected in greater reductions in serum cholesterol) resulted in greater reductions in risk of CVD events, explaining most heterogeneity between trials. The number needed to treat for an additional beneficial outcome (NNTB) was 56 in primary prevention trials, so 56 people need to reduce their saturated fat intake for ~four years for one person to avoid experiencing a CVD event. In secondary prevention trials, the NNTB was 32. Subgrouping did not suggest significant differences between replacement of saturated fat calories with polyunsaturated fat or carbohydrate, and data on replacement with monounsaturated fat and protein was very limited. We found little or no effect of reducing saturated fat on all-cause mortality (RR 0.96; 95% CI 0.90 to 1.03; 11 trials, 55,858 participants) or cardiovascular mortality (RR 0.95; 95% CI 0.80 to 1.12, 10 trials, 53,421 participants), both with GRADE moderate-quality evidence. There was little or no effect of reducing saturated fats on non-fatal myocardial infarction (RR 0.97, 95% CI 0.87 to 1.07) or CHD mortality (RR 0.97, 95% CI 0.82 to 1.16, both low-quality evidence), but effects on total (fatal or non-fatal) myocardial infarction, stroke and CHD events (fatal or non-fatal) were all unclear as the evidence was of very low quality. There was little or no effect on cancer mortality, cancer diagnoses, diabetes diagnosis, HDL cholesterol, serum triglycerides or blood pressure, and small reductions in weight, serum total cholesterol, LDL cholesterol and BMI. There was no evidence of harmful effects of reducing saturated fat intakes. AUTHORS' CONCLUSIONS: The findings of this updated review suggest that reducing saturated fat intake for at least two years causes a potentially important reduction in combined cardiovascular events. Replacing the energy from saturated fat with polyunsaturated fat or carbohydrate appear to be useful strategies, while effects of replacement with monounsaturated fat are unclear. The reduction in combined cardiovascular events resulting from reducing saturated fat did not alter by study duration, sex or baseline level of cardiovascular risk, but greater reduction in saturated fat caused greater reductions in cardiovascular events.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Gorduras na Dieta/administração & dosagem , Ácidos Graxos/administração & dosagem , Adulto , Doenças Cardiovasculares/mortalidade , Causas de Morte , Colesterol/sangue , Carboidratos da Dieta/administração & dosagem , Gorduras Insaturadas na Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Ingestão de Energia , Feminino , Humanos , Masculino , Infarto do Miocárdio/mortalidade , Infarto do Miocárdio/prevenção & controle , Ensaios Clínicos Controlados Aleatórios como Assunto , Acidente Vascular Cerebral/prevenção & controle
7.
Cochrane Database Syst Rev ; 3: CD003177, 2020 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-32114706

RESUMO

BACKGROUND: Omega-3 polyunsaturated fatty acids from oily fish (long-chain omega-3 (LCn3)), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), as well as from plants (alpha-linolenic acid (ALA)) may benefit cardiovascular health. Guidelines recommend increasing omega-3-rich foods, and sometimes supplementation, but recent trials have not confirmed this. OBJECTIVES: To assess the effects of increased intake of fish- and plant-based omega-3 fats for all-cause mortality, cardiovascular events, adiposity and lipids. SEARCH METHODS: We searched CENTRAL, MEDLINE and Embase to February 2019, plus ClinicalTrials.gov and World Health Organization International Clinical Trials Registry to August 2019, with no language restrictions. We handsearched systematic review references and bibliographies and contacted trial authors. SELECTION CRITERIA: We included randomised controlled trials (RCTs) that lasted at least 12 months and compared supplementation or advice to increase LCn3 or ALA intake, or both, versus usual or lower intake. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed trials for inclusion, extracted data and assessed validity. We performed separate random-effects meta-analysis for ALA and LCn3 interventions, and assessed dose-response relationships through meta-regression. MAIN RESULTS: We included 86 RCTs (162,796 participants) in this review update and found that 28 were at low summary risk of bias. Trials were of 12 to 88 months' duration and included adults at varying cardiovascular risk, mainly in high-income countries. Most trials assessed LCn3 supplementation with capsules, but some used LCn3- or ALA-rich or enriched foods or dietary advice compared to placebo or usual diet. LCn3 doses ranged from 0.5 g a day to more than 5 g a day (19 RCTs gave at least 3 g LCn3 daily). Meta-analysis and sensitivity analyses suggested little or no effect of increasing LCn3 on all-cause mortality (risk ratio (RR) 0.97, 95% confidence interval (CI) 0.93 to 1.01; 143,693 participants; 11,297 deaths in 45 RCTs; high-certainty evidence), cardiovascular mortality (RR 0.92, 95% CI 0.86 to 0.99; 117,837 participants; 5658 deaths in 29 RCTs; moderate-certainty evidence), cardiovascular events (RR 0.96, 95% CI 0.92 to 1.01; 140,482 participants; 17,619 people experienced events in 43 RCTs; high-certainty evidence), stroke (RR 1.02, 95% CI 0.94 to 1.12; 138,888 participants; 2850 strokes in 31 RCTs; moderate-certainty evidence) or arrhythmia (RR 0.99, 95% CI 0.92 to 1.06; 77,990 participants; 4586 people experienced arrhythmia in 30 RCTs; low-certainty evidence). Increasing LCn3 may slightly reduce coronary heart disease mortality (number needed to treat for an additional beneficial outcome (NNTB) 334, RR 0.90, 95% CI 0.81 to 1.00; 127,378 participants; 3598 coronary heart disease deaths in 24 RCTs, low-certainty evidence) and coronary heart disease events (NNTB 167, RR 0.91, 95% CI 0.85 to 0.97; 134,116 participants; 8791 people experienced coronary heart disease events in 32 RCTs, low-certainty evidence). Overall, effects did not differ by trial duration or LCn3 dose in pre-planned subgrouping or meta-regression. There is little evidence of effects of eating fish. Increasing ALA intake probably makes little or no difference to all-cause mortality (RR 1.01, 95% CI 0.84 to 1.20; 19,327 participants; 459 deaths in 5 RCTs, moderate-certainty evidence),cardiovascular mortality (RR 0.96, 95% CI 0.74 to 1.25; 18,619 participants; 219 cardiovascular deaths in 4 RCTs; moderate-certainty evidence), coronary heart disease mortality (RR 0.95, 95% CI 0.72 to 1.26; 18,353 participants; 193 coronary heart disease deaths in 3 RCTs; moderate-certainty evidence) and coronary heart disease events (RR 1.00, 95% CI 0.82 to 1.22; 19,061 participants; 397 coronary heart disease events in 4 RCTs; low-certainty evidence). However, increased ALA may slightly reduce risk of cardiovascular disease events (NNTB 500, RR 0.95, 95% CI 0.83 to 1.07; but RR 0.91, 95% CI 0.79 to 1.04 in RCTs at low summary risk of bias; 19,327 participants; 884 cardiovascular disease events in 5 RCTs; low-certainty evidence), and probably slightly reduces risk of arrhythmia (NNTB 91, RR 0.73, 95% CI 0.55 to 0.97; 4912 participants; 173 events in 2 RCTs; moderate-certainty evidence). Effects on stroke are unclear. Increasing LCn3 and ALA had little or no effect on serious adverse events, adiposity, lipids and blood pressure, except increasing LCn3 reduced triglycerides by ˜15% in a dose-dependent way (high-certainty evidence). AUTHORS' CONCLUSIONS: This is the most extensive systematic assessment of effects of omega-3 fats on cardiovascular health to date. Moderate- and low-certainty evidence suggests that increasing LCn3 slightly reduces risk of coronary heart disease mortality and events, and reduces serum triglycerides (evidence mainly from supplement trials). Increasing ALA slightly reduces risk of cardiovascular events and arrhythmia.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Suplementos Nutricionais , Ácidos Graxos Ômega-3/uso terapêutico , Prevenção Primária , Prevenção Secundária , Adiposidade , Adulto , Arritmias Cardíacas/epidemiologia , Doenças Cardiovasculares/dietoterapia , Doenças Cardiovasculares/mortalidade , Causas de Morte , Doença das Coronárias/mortalidade , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácido Eicosapentaenoico/uso terapêutico , Ácidos Graxos Ômega-3/efeitos adversos , Hemorragia/epidemiologia , Humanos , Embolia Pulmonar/epidemiologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Análise de Regressão , Acidente Vascular Cerebral/epidemiologia , Resultado do Tratamento , Ácido alfa-Linolênico/uso terapêutico
8.
Calcif Tissue Int ; 105(4): 353-372, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31346665

RESUMO

We conducted a systematic review and meta-analysis to assess the effects of increasing dietary omega-3, omega-6 and mixed polyunsaturated fatty acids (PUFA) on musculoskeletal health, functional status, sarcopenia and risk of fractures. We searched Medline, Embase, The Cochrane library, ClinicalTrials.gov and the WHO International Clinical Trials Registry Platform (ICTRP) databases for Randomised Controlled Trials (RCTs) of adults evaluating the effects of higher versus lower oral omega-3, omega-6 or mixed PUFA for ≥ 6 months on musculoskeletal and functional outcomes. We included 28 RCTs (7288 participants, 31 comparisons), 23 reported effects of omega-3, one of omega-6 and four of mixed total PUFA. Participants and doses were heterogeneous. Six omega-3 trials were judged at low summary risk of bias. We found low-quality evidence that increasing omega-3 increased lumbar spine BMD by 2.6% (0.03 g/cm2, 95% CI - 0.02 to 0.07, 463 participants). There was also the suggestion of an increase in femoral neck BMD (of 4.1%), but the evidence was of very low quality. There may be little or no effect of omega-3 on functional outcomes and bone mass; effects on other outcomes were unclear. Only one study reported on effects of omega-6 with very limited data. Increasing total PUFA had little or no effect on BMD or indices of fat-free (skeletal) muscle mass (low-quality evidence); no data were available on fractures, BMD or functional status and data on bone turnover markers were limited. Trials assessing effects of increasing omega-3, omega-6 and total PUFA on functional status, bone and skeletal muscle strength are limited with data lacking or of low quality. Whilst there is an indication that omega-3 may improve BMD, high-quality RCTs are needed to confirm this and effects on other musculoskeletal outcomes.


Assuntos
Densidade Óssea/efeitos dos fármacos , Densidade Óssea/fisiologia , Suplementos Nutricionais , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-6/farmacologia , Adulto , Fraturas Ósseas/tratamento farmacológico , Humanos
9.
Cochrane Database Syst Rev ; 11: CD003177, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30521670

RESUMO

BACKGROUND: Researchers have suggested that omega-3 polyunsaturated fatty acids from oily fish (long-chain omega-3 (LCn3), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), as well as from plants (alpha-linolenic acid (ALA)) benefit cardiovascular health. Guidelines recommend increasing omega-3-rich foods, and sometimes supplementation, but recent trials have not confirmed this. OBJECTIVES: To assess effects of increased intake of fish- and plant-based omega-3 for all-cause mortality, cardiovascular (CVD) events, adiposity and lipids. SEARCH METHODS: We searched CENTRAL, MEDLINE and Embase to April 2017, plus ClinicalTrials.gov and World Health Organization International Clinical Trials Registry to September 2016, with no language restrictions. We handsearched systematic review references and bibliographies and contacted authors. SELECTION CRITERIA: We included randomised controlled trials (RCTs) that lasted at least 12 months and compared supplementation and/or advice to increase LCn3 or ALA intake versus usual or lower intake. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed studies for inclusion, extracted data and assessed validity. We performed separate random-effects meta-analysis for ALA and LCn3 interventions, and assessed dose-response relationships through meta-regression. MAIN RESULTS: We included 79 RCTs (112,059 participants) in this review update and found that 25 were at low summary risk of bias. Trials were of 12 to 72 months' duration and included adults at varying cardiovascular risk, mainly in high-income countries. Most studies assessed LCn3 supplementation with capsules, but some used LCn3- or ALA-rich or enriched foods or dietary advice compared to placebo or usual diet. LCn3 doses ranged from 0.5g/d LCn3 to > 5 g/d (16 RCTs gave at least 3g/d LCn3).Meta-analysis and sensitivity analyses suggested little or no effect of increasing LCn3 on all-cause mortality (RR 0.98, 95% CI 0.90 to 1.03, 92,653 participants; 8189 deaths in 39 trials, high-quality evidence), cardiovascular mortality (RR 0.95, 95% CI 0.87 to 1.03, 67,772 participants; 4544 CVD deaths in 25 RCTs), cardiovascular events (RR 0.99, 95% CI 0.94 to 1.04, 90,378 participants; 14,737 people experienced events in 38 trials, high-quality evidence), coronary heart disease (CHD) mortality (RR 0.93, 95% CI 0.79 to 1.09, 73,491 participants; 1596 CHD deaths in 21 RCTs), stroke (RR 1.06, 95% CI 0.96 to 1.16, 89,358 participants; 1822 strokes in 28 trials) or arrhythmia (RR 0.97, 95% CI 0.90 to 1.05, 53,796 participants; 3788 people experienced arrhythmia in 28 RCTs). There was a suggestion that LCn3 reduced CHD events (RR 0.93, 95% CI 0.88 to 0.97, 84,301 participants; 5469 people experienced CHD events in 28 RCTs); however, this was not maintained in sensitivity analyses - LCn3 probably makes little or no difference to CHD event risk. All evidence was of moderate GRADE quality, except as noted.Increasing ALA intake probably makes little or no difference to all-cause mortality (RR 1.01, 95% CI 0.84 to 1.20, 19,327 participants; 459 deaths, 5 RCTs),cardiovascular mortality (RR 0.96, 95% CI 0.74 to 1.25, 18,619 participants; 219 cardiovascular deaths, 4 RCTs), and CHD mortality (1.1% to 1.0%, RR 0.95, 95% CI 0.72 to 1.26, 18,353 participants; 193 CHD deaths, 3 RCTs) and ALA may make little or no difference to CHD events (RR 1.00, 95% CI 0.80 to 1.22, 19,061 participants, 397 CHD events, 4 RCTs, low-quality evidence). However, increased ALA may slightly reduce risk of cardiovascular events (from 4.8% to 4.7%, RR 0.95, 95% CI 0.83 to 1.07, 19,327 participants; 884 CVD events, 5 RCTs, low-quality evidence with greater effects in trials at low summary risk of bias), and probably reduces risk of arrhythmia (3.3% to 2.6%, RR 0.79, 95% CI 0.57 to 1.10, 4,837 participants; 141 events, 1 RCT). Effects on stroke are unclear.Sensitivity analysis retaining only trials at low summary risk of bias moved effect sizes towards the null (RR 1.0) for all LCn3 primary outcomes except arrhythmias, but for most ALA outcomes, effect sizes moved to suggest protection. LCn3 funnel plots suggested that adding in missing studies/results would move effect sizes towards null for most primary outcomes. There were no dose or duration effects in subgrouping or meta-regression.There was no evidence that increasing LCn3 or ALA altered serious adverse events, adiposity or lipids, except LCn3 reduced triglycerides by ˜15% in a dose-dependant way (high-quality evidence). AUTHORS' CONCLUSIONS: This is the most extensive systematic assessment of effects of omega-3 fats on cardiovascular health to date. Moderate- and high-quality evidence suggests that increasing EPA and DHA has little or no effect on mortality or cardiovascular health (evidence mainly from supplement trials). Previous suggestions of benefits from EPA and DHA supplements appear to spring from trials with higher risk of bias. Low-quality evidence suggests ALA may slightly reduce CVD event and arrhythmia risk.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Suplementos Nutricionais , Ácidos Graxos Ômega-3/uso terapêutico , Adulto , Arritmias Cardíacas/epidemiologia , Doenças Cardiovasculares/dietoterapia , Doenças Cardiovasculares/mortalidade , Causas de Morte , Doença das Coronárias/mortalidade , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácido Eicosapentaenoico/uso terapêutico , Ácidos Graxos Ômega-3/efeitos adversos , Humanos , Prevenção Primária , Ensaios Clínicos Controlados Aleatórios como Assunto , Prevenção Secundária , Acidente Vascular Cerebral/epidemiologia , Resultado do Tratamento , Ácido alfa-Linolênico/uso terapêutico
10.
Cochrane Database Syst Rev ; 11: CD012345, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30484282

RESUMO

BACKGROUND: Evidence on the health effects of total polyunsaturated fatty acids (PUFA) is equivocal. Fish oils are rich in omega-3 PUFA and plant oils in omega-6 PUFA. Evidence suggests that increasing PUFA-rich foods, supplements or supplemented foods can reduce serum cholesterol, but may increase body weight, so overall cardiovascular effects are unclear. OBJECTIVES: To assess effects of increasing total PUFA intake on cardiovascular disease and all-cause mortality, lipids and adiposity in adults. SEARCH METHODS: We searched CENTRAL, MEDLINE and Embase to April 2017 and clinicaltrials.gov and the World Health Organization International Clinical Trials Registry Platform to September 2016, without language restrictions. We checked trials included in relevant systematic reviews. SELECTION CRITERIA: We included randomised controlled trials (RCTs) comparing higher with lower PUFA intakes in adults with or without cardiovascular disease that assessed effects over 12 months or longer. We included full texts, abstracts, trials registry entries and unpublished data. Outcomes were all-cause mortality, cardiovascular disease mortality and events, risk factors (blood lipids, adiposity, blood pressure), and adverse events. We excluded trials where we could not separate effects of PUFA intake from other dietary, lifestyle or medication interventions. DATA COLLECTION AND ANALYSIS: Two review authors independently screened titles and abstracts, assessed trials for inclusion, extracted data, and assessed risk of bias. We wrote to authors of included trials for further data. Meta-analyses used random-effects analysis, sensitivity analyses included fixed-effects and limiting to low summary risk of bias. We assessed GRADE quality of evidence. MAIN RESULTS: We included 49 RCTs randomising 24,272 participants, with duration of one to eight years. Eleven included trials were at low summary risk of bias, 33 recruited participants without cardiovascular disease. Baseline PUFA intake was unclear in most trials, but 3.9% to 8% of total energy intake where reported. Most trials gave supplemental capsules, but eight gave dietary advice, eight gave supplemental foods such as nuts or margarine, and three used a combination of methods to increase PUFA.Increasing PUFA intake probably has little or no effect on all-cause mortality (risk 7.8% vs 7.6%, risk ratio (RR) 0.98, 95% confidence interval (CI) 0.89 to 1.07, 19,290 participants in 24 trials), but probably slightly reduces risk of coronary heart disease events from 14.2% to 12.3% (RR 0.87, 95% CI 0.72 to 1.06, 15 trials, 10,076 participants) and cardiovascular disease events from 14.6% to 13.0% (RR 0.89, 95% CI 0.79 to 1.01, 17,799 participants in 21 trials), all moderate-quality evidence. Increasing PUFA may slightly reduce risk of coronary heart disease death (6.6% to 6.1%, RR 0.91, 95% CI 0.78 to 1.06, 9 trials, 8810 participants) andstroke (1.2% to 1.1%, RR 0.91, 95% CI 0.58 to 1.44, 11 trials, 14,742 participants, though confidence intervals include important harms), but has little or no effect on cardiovascular mortality (RR 1.02, 95% CI 0.82 to 1.26, 16 trials, 15,107 participants) all low-quality evidence. Effects of increasing PUFA on major adverse cardiac and cerebrovascular events and atrial fibrillation are unclear as evidence is of very low quality.Increasing PUFA intake probably slightly decreases triglycerides (by 15%, MD -0.12 mmol/L, 95% CI -0.20 to -0.04, 20 trials, 3905 participants), but has little or no effect on total cholesterol (mean difference (MD) -0.12 mmol/L, 95% CI -0.23 to -0.02, 26 trials, 8072 participants), high-density lipoprotein (HDL) (MD -0.01 mmol/L, 95% CI -0.02 to 0.01, 18 trials, 4674 participants) or low-density lipoprotein (LDL) (MD -0.01 mmol/L, 95% CI -0.09 to 0.06, 15 trials, 3362 participants). Increasing PUFA probably has little or no effect on adiposity (body weight MD 0.76 kg, 95% CI 0.34 to 1.19, 12 trials, 7100 participants).Effects of increasing PUFA on serious adverse events such as pulmonary embolism and bleeding are unclear as the evidence is of very low quality. AUTHORS' CONCLUSIONS: This is the most extensive systematic review of RCTs conducted to date to assess effects of increasing PUFA on cardiovascular disease, mortality, lipids or adiposity. Increasing PUFA intake probably slightly reduces risk of coronary heart disease and cardiovascular disease events, may slightly reduce risk of coronary heart disease mortality and stroke (though not ruling out harms), but has little or no effect on all-cause or cardiovascular disease mortality. The mechanism may be via TG reduction.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Ácidos Graxos Insaturados/administração & dosagem , Prevenção Primária , Prevenção Secundária , Adiposidade , Adulto , Arritmias Cardíacas/mortalidade , Arritmias Cardíacas/prevenção & controle , Doenças Cardiovasculares/mortalidade , Causas de Morte , Colesterol/sangue , Doença das Coronárias/mortalidade , Doença das Coronárias/prevenção & controle , Ácidos Graxos Insaturados/efeitos adversos , Humanos , Lipoproteínas HDL/sangue , Lipoproteínas LDL/sangue , Ensaios Clínicos Controlados Aleatórios como Assunto , Acidente Vascular Cerebral/mortalidade , Acidente Vascular Cerebral/prevenção & controle , Triglicerídeos/sangue , Aumento de Peso
11.
Cochrane Database Syst Rev ; 11: CD011094, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30488422

RESUMO

BACKGROUND: Omega-6 fats are polyunsaturated fats vital for many physiological functions, but their effect on cardiovascular disease (CVD) risk is debated. OBJECTIVES: To assess effects of increasing omega-6 fats (linoleic acid (LA), gamma-linolenic acid (GLA), dihomo-gamma-linolenic acid (DGLA) and arachidonic acid (AA)) on CVD and all-cause mortality. SEARCH METHODS: We searched CENTRAL, MEDLINE and Embase to May 2017 and clinicaltrials.gov and the World Health Organization International Clinical Trials Registry Platform to September 2016, without language restrictions. We checked trials included in relevant systematic reviews. SELECTION CRITERIA: We included randomised controlled trials (RCTs) comparing higher versus lower omega-6 fat intake in adults with or without CVD, assessing effects over at least 12 months. We included full texts, abstracts, trials registry entries and unpublished studies. Outcomes were all-cause mortality, CVD mortality, CVD events, risk factors (blood lipids, adiposity, blood pressure), and potential adverse events. We excluded trials where we could not separate omega-6 fat effects from those of other dietary, lifestyle or medication interventions. DATA COLLECTION AND ANALYSIS: Two authors independently screened titles/abstracts, assessed trials for inclusion, extracted data, and assessed risk of bias of included trials. We wrote to authors of included studies. Meta-analyses used random-effects analysis, while sensitivity analyses used fixed-effects and limited analyses to trials at low summary risk of bias. We assessed GRADE quality of evidence for 'Summary of findings' tables. MAIN RESULTS: We included 19 RCTs in 6461 participants who were followed for one to eight years. Seven trials assessed the effects of supplemental GLA and 12 of LA, none DGLA or AA; the omega-6 fats usually displaced dietary saturated or monounsaturated fats. We assessed three RCTs as being at low summary risk of bias.Primary outcomes: we found low-quality evidence that increased intake of omega-6 fats may make little or no difference to all-cause mortality (risk ratio (RR) 1.00, 95% confidence interval (CI) 0.88 to 1.12, 740 deaths, 4506 randomised, 10 trials) or CVD events (RR 0.97, 95% CI 0.81 to 1.15, 1404 people experienced events of 4962 randomised, 7 trials). We are uncertain whether increasing omega-6 fats affects CVD mortality (RR 1.09, 95% CI 0.76 to 1.55, 472 deaths, 4019 randomised, 7 trials), coronary heart disease events (RR 0.88, 95% CI 0.66 to 1.17, 1059 people with events of 3997 randomised, 7 trials), major adverse cardiac and cerebrovascular events (RR 0.84, 95% CI 0.59 to 1.20, 817 events, 2879 participants, 2 trials) or stroke (RR 1.36, 95% CI 0.45 to 4.11, 54 events, 3730 participants, 4 trials), as we assessed the evidence as being of very low quality. We found no evidence of dose-response or duration effects for any primary outcome, but there was a suggestion of greater protection in participants with lower baseline omega-6 intake across outcomes.Additional key outcomes: we found increased intake of omega-6 fats may reduce myocardial infarction (MI) risk (RR 0.88, 95% CI 0.76 to 1.02, 609 events, 4606 participants, 7 trials, low-quality evidence). High-quality evidence suggests increasing omega-6 fats reduces total serum cholesterol a little in the long term (mean difference (MD) -0.33 mmol/L, 95% CI -0.50 to -0.16, I2 = 81%; heterogeneity partially explained by dose, 4280 participants, 10 trials). Increasing omega-6 fats probably has little or no effect on adiposity (body mass index (BMI) MD -0.20 kg/m2, 95% CI -0.56 to 0.16, 371 participants, 1 trial, moderate-quality evidence). It may make little or no difference to serum triglycerides (MD -0.01 mmol/L, 95% CI -0.23 to 0.21, 834 participants, 5 trials), HDL (MD -0.01 mmol/L, 95% CI -0.03 to 0.02, 1995 participants, 4 trials) or low-density lipoprotein (MD -0.04 mmol/L, 95% CI -0.21 to 0.14, 244 participants, 2 trials, low-quality evidence). AUTHORS' CONCLUSIONS: This is the most extensive systematic assessment of effects of omega-6 fats on cardiovascular health, mortality, lipids and adiposity to date, using previously unpublished data. We found no evidence that increasing omega-6 fats reduces cardiovascular outcomes other than MI, where 53 people may need to increase omega-6 fat intake to prevent 1 person from experiencing MI. Although benefits of omega-6 fats remain to be proven, increasing omega-6 fats may be of benefit in people at high risk of MI. Increased omega-6 fats reduce serum total cholesterol but not other blood fat fractions or adiposity.


Assuntos
Pressão Sanguínea , Doenças Cardiovasculares/prevenção & controle , Colesterol/sangue , Ácidos Graxos Ômega-6/administração & dosagem , Prevenção Primária/métodos , Triglicerídeos/sangue , Adulto , Idoso , Doenças Cardiovasculares/mortalidade , Causas de Morte , Transtornos Cerebrovasculares/prevenção & controle , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/epidemiologia , Infarto do Miocárdio/prevenção & controle , Ensaios Clínicos Controlados Aleatórios como Assunto , Prevenção Secundária
12.
Cochrane Database Syst Rev ; 7: CD011094, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30019765

RESUMO

BACKGROUND: Omega-6 fats are polyunsaturated fats vital for many physiological functions, but their effect on cardiovascular disease (CVD) risk is debated. OBJECTIVES: To assess effects of increasing omega-6 fats (linoleic acid (LA), gamma-linolenic acid (GLA), dihomo-gamma-linolenic acid (DGLA) and arachidonic acid (AA)) on CVD and all-cause mortality. SEARCH METHODS: We searched CENTRAL, MEDLINE and Embase to May 2017 and clinicaltrials.gov and the World Health Organization International Clinical Trials Registry Platform to September 2016, without language restrictions. We checked trials included in relevant systematic reviews. SELECTION CRITERIA: We included randomised controlled trials (RCTs) comparing higher versus lower omega-6 fat intake in adults with or without CVD, assessing effects over at least 12 months. We included full texts, abstracts, trials registry entries and unpublished studies. Outcomes were all-cause mortality, CVD mortality, CVD events, risk factors (blood lipids, adiposity, blood pressure), and potential adverse events. We excluded trials where we could not separate omega-6 fat effects from those of other dietary, lifestyle or medication interventions. DATA COLLECTION AND ANALYSIS: Two authors independently screened titles/abstracts, assessed trials for inclusion, extracted data, and assessed risk of bias of included trials. We wrote to authors of included studies. Meta-analyses used random-effects analysis, while sensitivity analyses used fixed-effects and limited analyses to trials at low summary risk of bias. We assessed GRADE quality of evidence for 'Summary of findings' tables. MAIN RESULTS: We included 19 RCTs in 6461 participants who were followed for one to eight years. Seven trials assessed the effects of supplemental GLA and 12 of LA, none DGLA or AA; the omega-6 fats usually displaced dietary saturated or monounsaturated fats. We assessed three RCTs as being at low summary risk of bias.Primary outcomes: we found low-quality evidence that increased intake of omega-6 fats may make little or no difference to all-cause mortality (risk ratio (RR) 1.00, 95% confidence interval (CI) 0.88 to 1.12, 740 deaths, 4506 randomised, 10 trials) or CVD events (RR 0.97, 95% CI 0.81 to 1.15, 1404 people experienced events of 4962 randomised, 7 trials). We are uncertain whether increasing omega-6 fats affects CVD mortality (RR 1.09, 95% CI 0.76 to 1.55, 472 deaths, 4019 randomised, 7 trials), coronary heart disease events (RR 0.88, 95% CI 0.66 to 1.17, 1059 people with events of 3997 randomised, 7 trials), major adverse cardiac and cerebrovascular events (RR 0.84, 95% CI 0.59 to 1.20, 817 events, 2879 participants, 2 trials) or stroke (RR 1.36, 95% CI 0.45 to 4.11, 54 events, 3730 participants, 4 trials), as we assessed the evidence as being of very low quality. We found no evidence of dose-response or duration effects for any primary outcome, but there was a suggestion of greater protection in participants with lower baseline omega-6 intake across outcomes.Additional key outcomes: we found increased intake of omega-6 fats may reduce myocardial infarction (MI) risk (RR 0.88, 95% CI 0.76 to 1.02, 609 events, 4606 participants, 7 trials, low-quality evidence). High-quality evidence suggests increasing omega-6 fats reduces total serum cholesterol a little in the long term (mean difference (MD) -0.33 mmol/L, 95% CI -0.50 to -0.16, I2 = 81%; heterogeneity partially explained by dose, 4280 participants, 10 trials). Increasing omega-6 fats probably has little or no effect on adiposity (body mass index (BMI) MD -0.20 kg/m2, 95% CI -0.56 to 0.16, 371 participants, 1 trial, moderate-quality evidence). It may make little or no difference to serum triglycerides (MD -0.01 mmol/L, 95% CI -0.23 to 0.21, 834 participants, 5 trials), HDL (MD -0.01 mmol/L, 95% CI -0.03 to 0.02, 1995 participants, 4 trials) or low-density lipoprotein (MD -0.04 mmol/L, 95% CI -0.21 to 0.14, 244 participants, 2 trials, low-quality evidence). AUTHORS' CONCLUSIONS: This is the most extensive systematic assessment of effects of omega-6 fats on cardiovascular health, mortality, lipids and adiposity to date, using previously unpublished data. We found no evidence that increasing omega-6 fats reduces cardiovascular outcomes other than MI, where 53 people may need to increase omega-6 fat intake to prevent 1 person from experiencing MI. Although benefits of omega-6 fats remain to be proven, increasing omega-6 fats may be of benefit in people at high risk of MI. Increased omega-6 fats reduce serum total cholesterol but not other blood fat fractions or adiposity.


Assuntos
Pressão Sanguínea , Doenças Cardiovasculares/prevenção & controle , Colesterol/sangue , Ácidos Graxos Ômega-6/administração & dosagem , Prevenção Primária/métodos , Triglicerídeos/sangue , Adulto , Idoso , Doenças Cardiovasculares/mortalidade , Transtornos Cerebrovasculares/prevenção & controle , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/epidemiologia , Infarto do Miocárdio/prevenção & controle , Ensaios Clínicos Controlados Aleatórios como Assunto , Prevenção Secundária
13.
Cochrane Database Syst Rev ; 7: CD003177, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30019766

RESUMO

BACKGROUND: Researchers have suggested that omega-3 polyunsaturated fatty acids from oily fish (long-chain omega-3 (LCn3), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), as well as from plants (alpha-linolenic acid (ALA)) benefit cardiovascular health. Guidelines recommend increasing omega-3-rich foods, and sometimes supplementation, but recent trials have not confirmed this. OBJECTIVES: To assess effects of increased intake of fish- and plant-based omega-3 for all-cause mortality, cardiovascular (CVD) events, adiposity and lipids. SEARCH METHODS: We searched CENTRAL, MEDLINE and Embase to April 2017, plus ClinicalTrials.gov and World Health Organization International Clinical Trials Registry to September 2016, with no language restrictions. We handsearched systematic review references and bibliographies and contacted authors. SELECTION CRITERIA: We included randomised controlled trials (RCTs) that lasted at least 12 months and compared supplementation and/or advice to increase LCn3 or ALA intake versus usual or lower intake. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed studies for inclusion, extracted data and assessed validity. We performed separate random-effects meta-analysis for ALA and LCn3 interventions, and assessed dose-response relationships through meta-regression. MAIN RESULTS: We included 79 RCTs (112,059 participants) in this review update and found that 25 were at low summary risk of bias. Trials were of 12 to 72 months' duration and included adults at varying cardiovascular risk, mainly in high-income countries. Most studies assessed LCn3 supplementation with capsules, but some used LCn3- or ALA-rich or enriched foods or dietary advice compared to placebo or usual diet.Meta-analysis and sensitivity analyses suggested little or no effect of increasing LCn3 on all-cause mortality (RR 0.98, 95% CI 0.90 to 1.03, 92,653 participants; 8189 deaths in 39 trials, high-quality evidence), cardiovascular mortality (RR 0.95, 95% CI 0.87 to 1.03, 67,772 participants; 4544 CVD deaths in 25 RCTs), cardiovascular events (RR 0.99, 95% CI 0.94 to 1.04, 90,378 participants; 14,737 people experienced events in 38 trials, high-quality evidence), coronary heart disease (CHD) mortality (RR 0.93, 95% CI 0.79 to 1.09, 73,491 participants; 1596 CHD deaths in 21 RCTs), stroke (RR 1.06, 95% CI 0.96 to 1.16, 89,358 participants; 1822 strokes in 28 trials) or arrhythmia (RR 0.97, 95% CI 0.90 to 1.05, 53,796 participants; 3788 people experienced arrhythmia in 28 RCTs). There was a suggestion that LCn3 reduced CHD events (RR 0.93, 95% CI 0.88 to 0.97, 84,301 participants; 5469 people experienced CHD events in 28 RCTs); however, this was not maintained in sensitivity analyses - LCn3 probably makes little or no difference to CHD event risk. All evidence was of moderate GRADE quality, except as noted.Increasing ALA intake probably makes little or no difference to all-cause mortality (RR 1.01, 95% CI 0.84 to 1.20, 19,327 participants; 459 deaths, 5 RCTs),cardiovascular mortality (RR 0.96, 95% CI 0.74 to 1.25, 18,619 participants; 219 cardiovascular deaths, 4 RCTs), and it may make little or no difference to CHD events (RR 1.00, 95% CI 0.80 to 1.22, 19,061 participants, 397 CHD events, 4 RCTs, low-quality evidence). However, increased ALA may slightly reduce risk of cardiovascular events (from 4.8% to 4.7%, RR 0.95, 95% CI 0.83 to 1.07, 19,327 participants; 884 CVD events, 5 RCTs, low-quality evidence), and probably reduces risk of CHD mortality (1.1% to 1.0%, RR 0.95, 95% CI 0.72 to 1.26, 18,353 participants; 193 CHD deaths, 3 RCTs), and arrhythmia (3.3% to 2.6%, RR 0.79, 95% CI 0.57 to 1.10, 4,837 participants; 141 events, 1 RCT). Effects on stroke are unclear.Sensitivity analysis retaining only trials at low summary risk of bias moved effect sizes towards the null (RR 1.0) for all LCn3 primary outcomes except arrhythmias, but for most ALA outcomes, effect sizes moved to suggest protection. LCn3 funnel plots suggested that adding in missing studies/results would move effect sizes towards null for most primary outcomes. There were no dose or duration effects in subgrouping or meta-regression.There was no evidence that increasing LCn3 or ALA altered serious adverse events, adiposity or lipids, although LCn3 slightly reduced triglycerides and increased HDL. ALA probably reduces HDL (high- or moderate-quality evidence). AUTHORS' CONCLUSIONS: This is the most extensive systematic assessment of effects of omega-3 fats on cardiovascular health to date. Moderate- and high-quality evidence suggests that increasing EPA and DHA has little or no effect on mortality or cardiovascular health (evidence mainly from supplement trials). Previous suggestions of benefits from EPA and DHA supplements appear to spring from trials with higher risk of bias. Low-quality evidence suggests ALA may slightly reduce CVD event risk, CHD mortality and arrhythmia.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Suplementos Nutricionais , Ácidos Graxos Ômega-3/uso terapêutico , Adulto , Doenças Cardiovasculares/dietoterapia , Doenças Cardiovasculares/mortalidade , Causas de Morte , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácido Eicosapentaenoico/uso terapêutico , Ácidos Graxos Ômega-3/efeitos adversos , Humanos , Prevenção Primária , Ensaios Clínicos Controlados Aleatórios como Assunto , Prevenção Secundária , Resultado do Tratamento , Ácido alfa-Linolênico/uso terapêutico
14.
Cochrane Database Syst Rev ; 7: CD012345, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30019767

RESUMO

BACKGROUND: Evidence on the health effects of total polyunsaturated fatty acids (PUFA) is equivocal. Fish oils are rich in omega-3 PUFA and plant oils in omega-6 PUFA. Evidence suggests that increasing PUFA-rich foods, supplements or supplemented foods can reduce serum cholesterol, but may increase body weight, so overall cardiovascular effects are unclear. OBJECTIVES: To assess effects of increasing total PUFA intake on cardiovascular disease and all-cause mortality, lipids and adiposity in adults. SEARCH METHODS: We searched CENTRAL, MEDLINE and Embase to April 2017 and clinicaltrials.gov and the World Health Organization International Clinical Trials Registry Platform to September 2016, without language restrictions. We checked trials included in relevant systematic reviews. SELECTION CRITERIA: We included randomised controlled trials (RCTs) comparing higher with lower PUFA intakes in adults with or without cardiovascular disease that assessed effects over 12 months or longer. We included full texts, abstracts, trials registry entries and unpublished data. Outcomes were all-cause mortality, cardiovascular disease mortality and events, risk factors (blood lipids, adiposity, blood pressure), and adverse events. We excluded trials where we could not separate effects of PUFA intake from other dietary, lifestyle or medication interventions. DATA COLLECTION AND ANALYSIS: Two review authors independently screened titles and abstracts, assessed trials for inclusion, extracted data, and assessed risk of bias. We wrote to authors of included trials for further data. Meta-analyses used random-effects analysis, sensitivity analyses included fixed-effects and limiting to low summary risk of bias. We assessed GRADE quality of evidence. MAIN RESULTS: We included 49 RCTs randomising 24,272 participants, with duration of one to eight years. Eleven included trials were at low summary risk of bias, 33 recruited participants without cardiovascular disease. Baseline PUFA intake was unclear in most trials, but 3.9% to 8% of total energy intake where reported. Most trials gave supplemental capsules, but eight gave dietary advice, eight gave supplemental foods such as nuts or margarine, and three used a combination of methods to increase PUFA.Increasing PUFA intake probably has little or no effect on all-cause mortality (risk 7.8% vs 7.6%, risk ratio (RR) 0.98, 95% confidence interval (CI) 0.89 to 1.07, 19,290 participants in 24 trials), but probably slightly reduces risk of coronary heart disease events from 14.2% to 12.3% (RR 0.87, 95% CI 0.72 to 1.06, 15 trials, 10,076 participants) and cardiovascular disease events from 14.6% to 13.0% (RR 0.89, 95% CI 0.79 to 1.01, 17,799 participants in 21 trials), all moderate-quality evidence. Increasing PUFA may slightly reduce risk of coronary heart disease death (6.6% to 6.1%, RR 0.91, 95% CI 0.78 to 1.06, 9 trials, 8810 participants) andstroke (1.2% to 1.1%, RR 0.91, 95% CI 0.58 to 1.44, 11 trials, 14,742 participants, though confidence intervals include important harms), but has little or no effect on cardiovascular mortality (RR 1.02, 95% CI 0.82 to 1.26, 16 trials, 15,107 participants) all low-quality evidence. Effects of increasing PUFA on major adverse cardiac and cerebrovascular events and atrial fibrillation are unclear as evidence is of very low quality.Increasing PUFA intake slightly reduces total cholesterol (mean difference (MD) -0.12 mmol/L, 95% CI -0.23 to -0.02, 26 trials, 8072 participants) and probably slightly decreases triglycerides (MD -0.12 mmol/L, 95% CI -0.20 to -0.04, 20 trials, 3905 participants), but has little or no effect on high-density lipoprotein (HDL) (MD -0.01 mmol/L, 95% CI -0.02 to 0.01, 18 trials, 4674 participants) or low-density lipoprotein (LDL) (MD -0.01 mmol/L, 95% CI -0.09 to 0.06, 15 trials, 3362 participants). Increasing PUFA probably causes slight weight gain (MD 0.76 kg, 95% CI 0.34 to 1.19, 12 trials, 7100 participants).Effects of increasing PUFA on serious adverse events such as pulmonary embolism and bleeding are unclear as the evidence is of very low quality. AUTHORS' CONCLUSIONS: This is the most extensive systematic review of RCTs conducted to date to assess effects of increasing PUFA on cardiovascular disease, mortality, lipids or adiposity. Increasing PUFA intake probably slightly reduces risk of coronary heart disease and cardiovascular disease events, may slightly reduce risk of coronary heart disease mortality and stroke (though not ruling out harms), but has little or no effect on all-cause or cardiovascular disease mortality. The mechanism may be via lipid reduction, but increasing PUFA probably slightly increases weight.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Ácidos Graxos Insaturados/administração & dosagem , Prevenção Primária , Prevenção Secundária , Adiposidade , Adulto , Doenças Cardiovasculares/mortalidade , Causas de Morte , Colesterol/sangue , Ácidos Graxos Insaturados/efeitos adversos , Humanos , Lipoproteínas HDL/sangue , Lipoproteínas LDL/sangue , Ensaios Clínicos Controlados Aleatórios como Assunto , Triglicerídeos/sangue , Aumento de Peso
15.
BMC Geriatr ; 16: 89, 2016 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-27142469

RESUMO

BACKGROUND: Risks and prevalence of malnutrition and dehydration are high in older people but even higher in older people with dementia. In the EDWINA (Eating and Drinking Well IN dementiA) systematic review we aimed to assess effectiveness of interventions aiming to improve, maintain or facilitate food/drink intake indirectly, through food service or dining environment modification, education, exercise or behavioural interventions in people with cognitive impairment or dementia (across all settings, levels of care and support, types and degrees of dementia). METHODS: We comprehensively searched Medline and twelve further databases, plus bibliographies, for intervention studies with ≥3 cognitively impaired adult participants (any type/stage). The review was conducted with service user input in accordance with Cochrane Collaboration's guidelines. We duplicated assessment of inclusion, data extraction, and validity assessment, tabulating data. Meta-analysis (statistical pooling) was not appropriate so data were tabulated and synthesised narratively. RESULTS: We included 56 interventions (reported in 51 studies). Studies were small and there were no clearly effective, or clearly ineffective, interventions. Promising interventions included: eating meals with care-givers, family style meals, soothing mealtime music, constantly accessible snacks and longer mealtimes, education and support for formal and informal care-givers, spaced retrieval and Montessori activities, facilitated breakfast clubs, multisensory exercise and multicomponent interventions. CONCLUSIONS: We found no definitive evidence on effectiveness, or lack of effectiveness, of specific interventions but studies were small and short term. A variety of promising indirect interventions need to be tested in large, high-quality RCTs, and may be approaches that people with dementia and their formal or informal care-givers would wish to try. TRIAL REGISTRATION: The systematic review protocol was registered (CRD42014007611) and is published, with the full MEDLINE search strategy, on Prospero (http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42014007611).


Assuntos
Demência/dietoterapia , Demência/psicologia , Ingestão de Líquidos , Intervenção Médica Precoce/métodos , Ingestão de Alimentos/psicologia , Terapia Comportamental/métodos , Ensaios Clínicos como Assunto/métodos , Desidratação/diagnóstico , Desidratação/prevenção & controle , Desidratação/psicologia , Demência/diagnóstico , Ingestão de Líquidos/fisiologia , Ingestão de Alimentos/fisiologia , Exercício Físico/psicologia , Humanos , Resultado do Tratamento
16.
BMC Geriatr ; 16: 26, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26801619

RESUMO

BACKGROUND: Eating and drinking difficulties are recognised sources of ill health in people with dementia. In the EDWINA (Eating and Drinking Well IN dementiA) systematic review we aimed to assess effectiveness of interventions to directly improve, maintain or facilitate oral food and drink intake, nutrition and hydration status, in people with cognitive impairment or dementia (across all settings, levels of care and support, types and degrees of dementia). Interventions included oral nutrition supplementation, food modification, dysphagia management, eating assistance and supporting the social element of eating and drinking. METHODS: We comprehensively searched 13 databases for relevant intervention studies. The review was conducted with service user input in accordance with Cochrane Collaboration's guidelines. We duplicated assessment of inclusion, data extraction, and validity assessment, tabulating data, carrying out random effects meta-analysis and narrative synthesis. RESULTS: Forty-three controlled interventions were included, disappointingly none were judged at low risk of bias. Oral nutritional supplementation studies suggested small positive short term but unclear long term effects on nutritional status. Food modification or dysphagia management studies were smaller and of low quality, providing little evidence of an improved nutritional status. Eating assistance studies provided inconsistent evidence, but studies with a strong social element around eating/drinking, although small and of low quality provided consistent suggestion of improvements in aspects of quality of life. There were few data to address stakeholders' questions. CONCLUSIONS: We found no definitive evidence on effectiveness, or lack of effectiveness, of specific interventions but studies were small and short term. People with cognitive impairment and their carers have to tackle eating problems despite this lack of evidence, so promising interventions are listed. The need remains for high quality trials tailored for people with cognitive impairment assessing robust outcomes. SYSTEMATIC REVIEW REGISTRATION: The systematic review protocol was registered (CRD42014007611) and is published, with the full MEDLINE search strategy, on Prospero.


Assuntos
Transtornos de Deglutição/complicações , Desidratação , Demência , Desnutrição , Terapia Nutricional/métodos , Qualidade de Vida , Idoso , Transtornos de Deglutição/fisiopatologia , Desidratação/etiologia , Desidratação/prevenção & controle , Demência/complicações , Demência/fisiopatologia , Demência/psicologia , Demência/terapia , Comportamento de Ingestão de Líquido/fisiologia , Comportamento Alimentar/fisiologia , Humanos , Desnutrição/etiologia , Desnutrição/prevenção & controle , Estado Nutricional , Resultado do Tratamento
17.
Cochrane Database Syst Rev ; (6): CD011737, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26068959

RESUMO

BACKGROUND: Reducing saturated fat reduces serum cholesterol, but effects on other intermediate outcomes may be less clear. Additionally it is unclear whether the energy from saturated fats that are lost in the diet are more helpfully replaced by polyunsaturated fats, monounsaturated fats, carbohydrate or protein. This review is part of a series split from and updating an overarching review. OBJECTIVES: To assess the effect of reducing saturated fat intake and replacing it with carbohydrate (CHO), polyunsaturated (PUFA) or monounsaturated fat (MUFA) and/or protein on mortality and cardiovascular morbidity, using all available randomised clinical trials. SEARCH METHODS: We updated our searches of the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (Ovid) and EMBASE (Ovid) on 5 March 2014. We also checked references of included studies and reviews. SELECTION CRITERIA: Trials fulfilled the following criteria: 1) randomised with appropriate control group; 2) intention to reduce saturated fat intake OR intention to alter dietary fats and achieving a reduction in saturated fat; 3) not multifactorial; 4) adult humans with or without cardiovascular disease (but not acutely ill, pregnant or breastfeeding); 5) intervention at least 24 months; 6) mortality or cardiovascular morbidity data available. DATA COLLECTION AND ANALYSIS: Two review authors working independently extracted participant numbers experiencing health outcomes in each arm, and we performed random-effects meta-analyses, meta-regression, subgrouping, sensitivity analyses and funnel plots. MAIN RESULTS: We include 15 randomised controlled trials (RCTs) (17 comparisons, ˜59,000 participants), which used a variety of interventions from providing all food to advice on how to reduce saturated fat. The included long-term trials suggested that reducing dietary saturated fat reduced the risk of cardiovascular events by 17% (risk ratio (RR) 0.83; 95% confidence interval (CI) 0.72 to 0.96, 13 comparisons, 53,300 participants of whom 8% had a cardiovascular event, I² 65%, GRADE moderate quality of evidence), but effects on all-cause mortality (RR 0.97; 95% CI 0.90 to 1.05; 12 trials, 55,858 participants) and cardiovascular mortality (RR 0.95; 95% CI 0.80 to 1.12, 12 trials, 53,421 participants) were less clear (both GRADE moderate quality of evidence). There was some evidence that reducing saturated fats reduced the risk of myocardial infarction (fatal and non-fatal, RR 0.90; 95% CI 0.80 to 1.01; 11 trials, 53,167 participants), but evidence for non-fatal myocardial infarction (RR 0.95; 95% CI 0.80 to 1.13; 9 trials, 52,834 participants) was unclear and there were no clear effects on stroke (any stroke, RR 1.00; 95% CI 0.89 to 1.12; 8 trials, 50,952 participants). These relationships did not alter with sensitivity analysis. Subgrouping suggested that the reduction in cardiovascular events was seen in studies that primarily replaced saturated fat calories with polyunsaturated fat, and no effects were seen in studies replacing saturated fat with carbohydrate or protein, but effects in studies replacing with monounsaturated fats were unclear (as we located only one small trial). Subgrouping and meta-regression suggested that the degree of reduction in cardiovascular events was related to the degree of reduction of serum total cholesterol, and there were suggestions of greater protection with greater saturated fat reduction or greater increase in polyunsaturated and monounsaturated fats. There was no evidence of harmful effects of reducing saturated fat intakes on cancer mortality, cancer diagnoses or blood pressure, while there was some evidence of improvements in weight and BMI. AUTHORS' CONCLUSIONS: The findings of this updated review are suggestive of a small but potentially important reduction in cardiovascular risk on reduction of saturated fat intake. Replacing the energy from saturated fat with polyunsaturated fat appears to be a useful strategy, and replacement with carbohydrate appears less useful, but effects of replacement with monounsaturated fat were unclear due to inclusion of only one small trial. This effect did not appear to alter by study duration, sex or baseline level of cardiovascular risk. Lifestyle advice to all those at risk of cardiovascular disease and to lower risk population groups should continue to include permanent reduction of dietary saturated fat and partial replacement by unsaturated fats. The ideal type of unsaturated fat is unclear.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Gorduras na Dieta/administração & dosagem , Ácidos Graxos/administração & dosagem , Adulto , Doenças Cardiovasculares/mortalidade , Causas de Morte , Carboidratos da Dieta/administração & dosagem , Gorduras Insaturadas na Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Ingestão de Energia , Humanos , Infarto do Miocárdio/mortalidade , Infarto do Miocárdio/prevenção & controle , Ensaios Clínicos Controlados Aleatórios como Assunto , Acidente Vascular Cerebral/prevenção & controle
18.
Cochrane Database Syst Rev ; (8): CD011834, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26250104

RESUMO

BACKGROUND: In order to prevent overweight and obesity in the general population we need to understand the relationship between the proportion of energy from fat and resulting weight and body fatness in the general population. OBJECTIVES: To assess the effects of proportion of energy intake from fat on measures of weight and body fatness (including obesity, waist circumference and body mass index) in people not aiming to lose weight, using all appropriate randomised controlled trials (RCTs) and cohort studies in adults, children and young people SEARCH METHODS: We searched CENTRAL to March 2014 and MEDLINE, EMBASE and CINAHL to November 2014. We did not limit the search by language. We also checked the references of relevant reviews. SELECTION CRITERIA: Trials fulfilled the following criteria: 1) randomised intervention trial, 2) included children (aged ≥ 24 months), young people or adults, 3) randomised to a lower fat versus usual or moderate fat diet, without the intention to reduce weight in any participants, 4) not multifactorial and 5) assessed a measure of weight or body fatness after at least six months. We also included cohort studies in children, young people and adults that assessed the proportion of energy from fat at baseline and assessed the relationship with body weight or fatness after at least one year. We duplicated inclusion decisions and resolved disagreement by discussion or referral to a third party. DATA COLLECTION AND ANALYSIS: We extracted data on the population, intervention, control and outcome measures in duplicate. We extracted measures of weight and body fatness independently in duplicate at all available time points. We performed random-effects meta-analyses, meta-regression, subgrouping, sensitivity and funnel plot analyses. MAIN RESULTS: We included 32 RCTs (approximately 54,000 participants) and 30 sets of analyses of 25 cohorts. There is consistent evidence from RCTs in adults of a small weight-reducing effect of eating a smaller proportion of energy from fat; this was seen in almost all included studies and was highly resistant to sensitivity analyses. The effect of eating less fat (compared with usual diet) is a mean weight reduction of 1.5 kg (95% confidence interval (CI) -2.0 to -1.1 kg), but greater weight loss results from greater fat reductions. The size of the effect on weight does not alter over time and is mirrored by reductions in body mass index (BMI) (-0.5 kg/m(2), 95% CI -0.7 to -0.3) and waist circumference (-0.3 cm, 95% CI -0.6 to -0.02). Included cohort studies in children and adults most often do not suggest any relationship between total fat intake and later measures of weight, body fatness or change in body fatness. However, there was a suggestion that lower fat intake was associated with smaller increases in weight in middle-aged but not elderly adults, and in change in BMI in the highest validity child cohort. AUTHORS' CONCLUSIONS: Trials where participants were randomised to a lower fat intake versus usual or moderate fat intake, but with no intention to reduce weight, showed a consistent, stable but small effect of low fat intake on body fatness: slightly lower weight, BMI and waist circumference compared with controls. Greater fat reduction and lower baseline fat intake were both associated with greater reductions in weight. This effect of reducing total fat was not consistently reflected in cohort studies assessing the relationship between total fat intake and later measures of body fatness or change in body fatness in studies of children, young people or adults.


Assuntos
Gorduras na Dieta/administração & dosagem , Ingestão de Energia , Tamanho da Porção , Circunferência da Cintura , Redução de Peso , Adolescente , Adulto , Fatores Etários , Índice de Massa Corporal , Peso Corporal , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/dietoterapia , Ensaios Clínicos Controlados Aleatórios como Assunto , Adulto Jovem
19.
Cochrane Database Syst Rev ; (4): CD009647, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25924806

RESUMO

BACKGROUND: There is evidence that water-loss dehydration is common in older people and associated with many causes of morbidity and mortality. However, it is unclear what clinical symptoms, signs and tests may be used to identify early dehydration in older people, so that support can be mobilised to improve hydration before health and well-being are compromised. OBJECTIVES: To determine the diagnostic accuracy of state (one time), minimally invasive clinical symptoms, signs and tests to be used as screening tests for detecting water-loss dehydration in older people by systematically reviewing studies that have measured a reference standard and at least one index test in people aged 65 years and over. Water-loss dehydration was defined primarily as including everyone with either impending or current water-loss dehydration (including all those with serum osmolality ≥ 295 mOsm/kg as being dehydrated). SEARCH METHODS: Structured search strategies were developed for MEDLINE (OvidSP), EMBASE (OvidSP), CINAHL, LILACS, DARE and HTA databases (The Cochrane Library), and the International Clinical Trials Registry Platform (ICTRP). Reference lists of included studies and identified relevant reviews were checked. Authors of included studies were contacted for details of further studies. SELECTION CRITERIA: Titles and abstracts were scanned and all potentially relevant studies obtained in full text. Inclusion of full text studies was assessed independently in duplicate, and disagreements resolved by a third author. We wrote to authors of all studies that appeared to have collected data on at least one reference standard and at least one index test, and in at least 10 people aged ≥ 65 years, even where no comparative analysis has been published, requesting original dataset so we could create 2 x 2 tables. DATA COLLECTION AND ANALYSIS: Diagnostic accuracy of each test was assessed against the best available reference standard for water-loss dehydration (serum or plasma osmolality cut-off ≥ 295 mOsm/kg, serum osmolarity or weight change) within each study. For each index test study data were presented in forest plots of sensitivity and specificity. The primary target condition was water-loss dehydration (including either impending or current water-loss dehydration). Secondary target conditions were intended as current (> 300 mOsm/kg) and impending (295 to 300 mOsm/kg) water-loss dehydration, but restricted to current dehydration in the final review.We conducted bivariate random-effects meta-analyses (Stata/IC, StataCorp) for index tests where there were at least four studies and study datasets could be pooled to construct sensitivity and specificity summary estimates. We assigned the same approach for index tests with continuous outcome data for each of three pre-specified cut-off points investigated.Pre-set minimum sensitivity of a useful test was 60%, minimum specificity 75%. As pre-specifying three cut-offs for each continuous test may have led to missing a cut-off with useful sensitivity and specificity, we conducted post-hoc exploratory analyses to create receiver operating characteristic (ROC) curves where there appeared some possibility of a useful cut-off missed by the original three. These analyses enabled assessment of which tests may be worth assessing in further research. A further exploratory analysis assessed the value of combining the best two index tests where each had some individual predictive ability. MAIN RESULTS: There were few published studies of the diagnostic accuracy of state (one time), minimally invasive clinical symptoms, signs or tests to be used as screening tests for detecting water-loss dehydration in older people. Therefore, to complete this review we sought, analysed and included raw datasets that included a reference standard and an index test in people aged ≥ 65 years.We included three studies with published diagnostic accuracy data and a further 21 studies provided datasets that we analysed. We assessed 67 tests (at three cut-offs for each continuous outcome) for diagnostic accuracy of water-loss dehydration (primary target condition) and of current dehydration (secondary target condition).Only three tests showed any ability to diagnose water-loss dehydration (including both impending and current water-loss dehydration) as stand-alone tests: expressing fatigue (sensitivity 0.71 (95% CI 0.29 to 0.96), specificity 0.75 (95% CI 0.63 to 0.85), in one study with 71 participants, but two additional studies had lower sensitivity); missing drinks between meals (sensitivity 1.00 (95% CI 0.59 to 1.00), specificity 0.77 (95% CI 0.64 to 0.86), in one study with 71 participants) and BIA resistance at 50 kHz (sensitivities 1.00 (95% CI 0.48 to 1.00) and 0.71 (95% CI 0.44 to 0.90) and specificities of 1.00 (95% CI 0.69 to 1.00) and 0.80 (95% CI 0.28 to 0.99) in 15 and 22 people respectively for two studies, but with sensitivities of 0.54 (95% CI 0.25 to 0.81) and 0.69 (95% CI 0.56 to 0.79) and specificities of 0.50 (95% CI 0.16 to 0.84) and 0.19 (95% CI 0.17 to 0.21) in 21 and 1947 people respectively in two other studies). In post-hoc ROC plots drinks intake, urine osmolality and axillial moisture also showed limited diagnostic accuracy. No test was consistently useful in more than one study.Combining two tests so that an individual both missed some drinks between meals and expressed fatigue was sensitive at 0.71 (95% CI 0.29 to 0.96) and specific at 0.92 (95% CI 0.83 to 0.97).There was sufficient evidence to suggest that several stand-alone tests often used to assess dehydration in older people (including fluid intake, urine specific gravity, urine colour, urine volume, heart rate, dry mouth, feeling thirsty and BIA assessment of intracellular water or extracellular water) are not useful, and should not be relied on individually as ways of assessing presence or absence of dehydration in older people.No tests were found consistently useful in diagnosing current water-loss dehydration. AUTHORS' CONCLUSIONS: There is limited evidence of the diagnostic utility of any individual clinical symptom, sign or test or combination of tests to indicate water-loss dehydration in older people. Individual tests should not be used in this population to indicate dehydration; they miss a high proportion of people with dehydration, and wrongly label those who are adequately hydrated.Promising tests identified by this review need to be further assessed, as do new methods in development. Combining several tests may improve diagnostic accuracy.


Assuntos
Desidratação/diagnóstico , Água Potável/administração & dosagem , Idoso , Desidratação/sangue , Impedância Elétrica , Feminino , Humanos , Masculino , Doenças da Boca/diagnóstico , Concentração Osmolar , Sensibilidade e Especificidade , Fenômenos Fisiológicos da Pele , Avaliação de Sintomas/métodos , Urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA