Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 195, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971787

RESUMO

This study explores a sustainable approach for synthesizing silver nanocomposites (AgNCs) with enhanced antimicrobial and bioactivity using safe Lactobacillus strains and a whey-based medium (WBM). WBM effectively supported the growth of Lactobacillus delbrueckii and Lactobacillus acidophilus, triggering a stress response that led to AgNCs formation. The synthesized AgNCs were characterized using advanced spectroscopic and imaging techniques such as UV‒visible, Fourier transform infrared (FT-IR) spectroscopy, transmission electron (TEM), and scanning electron microscopy with energy dispersive X-ray analysis (SEM-Edx). Lb acidophilus-synthesized AgNCs in WBM (had DLS size average 817.2-974.3 ± PDI = 0.441 nm with an average of metal core size 13.32 ± 3.55 nm) exhibited significant antimicrobial activity against a broad spectrum of pathogens, including bacteria such as Escherichia coli (16.47 ± 2.19 nm), Bacillus cereus (15.31 ± 0.43 nm), Clostridium perfringens (25.95 ± 0.03 mm), Enterococcus faecalis (32.34 ± 0.07 mm), Listeria monocytogenes (23.33 ± 0.05 mm), methicillin-resistant Staphylococcus aureus (MRSA) (13.20 ± 1.76 mm), and filamentous fungi such as Aspergillus brasiliensis (33.46 ± 0.01 mm). In addition, Lb acidophilus-synthesized AgNCs in WBM exhibit remarkable free radical scavenging abilities, suggesting their potential as bioavailable antioxidants. These findings highlight the dual functionality of these biogenic AgNCs, making them promising candidates for applications in both medicine and nutrition.


Assuntos
Testes de Sensibilidade Microbiana , Nanocompostos , Prata , Soro do Leite , Nanocompostos/química , Prata/química , Prata/farmacologia , Soro do Leite/química , Soro do Leite/metabolismo , Lactobacillus acidophilus/efeitos dos fármacos , Lactobacillus acidophilus/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/biossíntese , Nanopartículas Metálicas/química , Lactobacillus/metabolismo , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Environ Health Perspect ; 64: 4-18, 1985 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-3913602

RESUMO

The anthracycline antitumor antibiotics occupy a central position in the chemotherapeutic control of cancer. They remain, however, antibiotics of the last resort and thus exhibit toxicity both to the neoplasm and to the host organism. As part of the continuing effort to dissociate the molecular processes responsible for these two separate toxicities, attention has been drawn to the intrinsic redox capacity of their tetrahydronapthacenedione aglycone moiety, and to the possible expression of this redox activity against those biomolecules for which anthracyclines have a particular affinity (polynucleotides and membranes). This review is a synopsis of the present trends and thoughts concerning this relationship, written from the point of view of the intrinsic chemical competence of the anthracyclines and their metabolites. While our ignorance is profound--the precise molecular locus of the antitumor expression of the anthracyclines remains unknown--there is now evidence that the relationship of the anthracyclines to the DNA (possibly requiring enzymatic cooperation) and to the membranes, with neither event requiring redox chemistry, may comprise the core of the antitumor effects. The adventitious expression of the redox activity under either aerobic conditions (in which circumstances molecular oxygen is reduced) or anaerobic conditions (in which circumstances potentially reactive aglycone tautomers are obtained) is therefore thought to contribute more strongly to the host toxicity. Yet little remains proven, and the understanding of the intrinsic chemical competence can do little more than lightly define the boundaries within which are found these and numerous other working hypotheses.


Assuntos
Antibióticos Antineoplásicos , Animais , Biotransformação , Membrana Celular/efeitos dos fármacos , Fenômenos Químicos , Química , DNA/metabolismo , Radicais Livres , Humanos , Peróxidos Lipídicos/metabolismo , Naftacenos/farmacologia , Naftacenos/uso terapêutico , Neoplasias/tratamento farmacológico , Oligonucleotídeos/metabolismo , Oxirredução , Relação Estrutura-Atividade
3.
Biochemistry ; 24(14): 3562-71, 1985 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-3862429

RESUMO

Spinach NADPH:ferredoxin oxidoreductase (EC 1.6.7.1) catalyzes the NADPH-dependent reduction of the anthracyclines daunomycin, aclacinomycin A, and nogalamycin and their respective 7-deoxyanthracyclinones. Under anaerobic conditions, the endogenous rate of O2 reduction by NADPH catalyzed by ferredoxin reductase (0.12 s-1 at pH 7.4) is augmented by the anthracyclines and 7-deoxyanthracyclinones. The catalytic constants are approximately equivalent for this augmentation for all substrates (approximate V of 2 s-1 and KM of 75 microM). Both O2- and H2O2 are made. Under anaerobic conditions, anthracycline reduction catalyzed by ferredoxin reductase results in the elimination of the C-7 substituent to provide a quinone methide intermediate. Following tautomerization by C-7 protonation, 7-deoxyanthracyclinones are obtained. Under appropriate conditions these may be further reduced to the 7-deoxyanthracyclinone hydroquinones. For daunomycin, the quinone methide is formed rapidly after reduction and is easily monitored at 600 nm. It may react with electrophiles other than H+, as demonstrated by its competitive trapping by p-carboxybenzaldehyde. It may also react with nucleophiles, as demonstrated by its competitive trapping by N-acetylcysteine. For aclacinomycin, quinone methide formation is also rapid although no distinct transient near 600 nm occurs. In addition to protonation, it reacts with itself providing the 7,7'-dimer. With ethyl xanthate as a thiolate nucleophile, adducts derived from addition to C-7 are obtained. For nogalamycin, quinone methide formation is not rapid. Nogalamycin is reduced to its hydroquinone, which slowly converts in a first-order process [k = (1.2 +/- 0.2) X 10(-3) s-1, pH 8.0, 30 degrees C] to the quinone methide, which is then quenched by protonation. Spinach ferredoxin in its reduced form is chemically competent for anthracycline reduction. Its effect on both the aerobic and anaerobic reactions catalyzed by ferredoxin reductase is to increase severalfold the overall velocity for anthracycline reduction. In conclusion, the aerobic reaction pathways for the anthracyclines as mediated by ferredoxin reductase are remarkably similar, while the anaerobic reactions are remarkably different. If these anthracyclines exert their antitumor activity by a common anaerobic pathway, it is most likely that the pathway is determined by the properties of the anthracycline as complexed to its in vivo target. The behavior of ferredoxin further suggests that not only low-potential flavin centers but also iron-sulfur centers should be regarded as important loci for anthracycline reductive activation.


Assuntos
Antibacterianos/metabolismo , Daunorrubicina/análogos & derivados , Daunorrubicina/metabolismo , Ferredoxina-NADP Redutase/metabolismo , Ferredoxinas/metabolismo , NADH NADPH Oxirredutases/metabolismo , Nogalamicina/metabolismo , Plantas/enzimologia , Aclarubicina , Manganês/farmacologia , Naftacenos/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA