Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(12): 6118-6128, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38470837

RESUMO

Strongly bound surface species like alkylamines adsorbed on the Brønsted acid site of aluminosilicate zeolites exhibit negligible rates of molecular desorption, preventing them from achieving an equilibrated state on experimentally relevant time scales that limit the measurement of their adsorption thermodynamics. Through adsorption-assisted desorption, whereby distinct alkylamines facilitate desorption from Brønsted acid sites, we demonstrate that equilibrated states are achieved. Breakthrough adsorption measurements reveal that while 2-butylammonium on a Brønsted acid site is irreversibly adsorbed, it readily undergoes molecular desorption when exposed to a distinct alkylamine like 2-propanamine. As a result, two-adsorbate equilibrium was achieved when the Brønsted acid sites of aluminosilicate zeolites were exposed to a binary vapor-phase alkylamine mixture. By varying relative vapor-phase partial pressures and temperatures, we demonstrate the ability to experimentally measure the adsorption enthalpy and entropy of alkylammonium adsorbates on mostly isolated Brønsted acid sites in H-ZSM-5 (Si/Al = 140). A multiadsorbate Langmuir isotherm was found to quantitatively describe the coadsorption of alkylamines varying in size and basicity over a wide range of conditions through which the relative adsorption enthalpy and entropy of alkylamines were measured. Across a homologous family of sec-alkylamines (C3-C5) adsorbed on isolated Brønsted acid sites, a fixed contribution to the enthalpy (19 ± 4 kJ mol CH2-1) and entropy (25 ± 4 J mol CH2-1 K-1) of adsorption per methylene unit was found to exist, likely resulting from electrostatic interactions between the alkyl chain and the surrounding pore environment.

2.
J Am Chem Soc ; 144(48): 22113-22127, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36383403

RESUMO

Accelerating catalytic chemistry and tuning surface reactions require precise control of the electron density of metal atoms. In this work, nanoclusters of platinum were supported on a graphene sheet within a catalytic condenser device that facilitated electron or hole accumulation in the platinum active sites with negative or positive applied potential, respectively. The catalytic condenser was fabricated by depositing on top of a p-type Si wafer an amorphous HfO2 dielectric (70 nm), on which was placed the active layer of 2-4 nm platinum nanoclusters on graphene. A potential of ±6 V applied to the Pt/graphene layer relative to the silicon electrode moved electrons into or out of the active sites of Pt, attaining charge densities more than 1% of an electron or hole per surface Pt atom. At a level of charge condensation of ±10% of an electron per surface atom, the binding energy of carbon monoxide to a Pt(111) surface was computed via density functional theory to change 24 kJ mol-1 (0.25 eV), which was consistent with the range of carbon monoxide binding energies determined from temperature-programmed desorption (ΔBECO of 20 ± 1 kJ mol-1 or 0.19 eV) and equilibrium surface coverage measurements (ΔBECO of 14 ± 1 kJ mol-1 or 0.14 eV). Impedance spectroscopy indicated that Pt/graphene condensers with potentials oscillating at 3000 Hz exhibited negligible loss in capacitance and charge accumulation, enabling programmable surface conditions at amplitudes and frequencies necessary to achieve catalytic resonance.

3.
Angew Chem Int Ed Engl ; 59(24): 9579-9585, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32115827

RESUMO

Commonly used methods to assess crystallinity, micro-/mesoporosity, Brønsted acid site density and distribution (in micro- vs. mesopores), and catalytic activity suggest nearly invariant structure and function for aluminosilicate zeolite MFI two-dimensional nanosheets before and after superheated steam treatment. Yet, pronounced reaction rate decrease for benzyl alcohol alkylation with mesitylene, a reaction that cannot take place in the zeolite micropores, is observed. Transmission electron microscopy images reveal pronounced changes in nanosheet thickness, aspect ratio and roughness indicating that nanosheet coarsening and the associated changes in the external (mesoporous) surface structure are responsible for the changes in the external surface catalytic activity. Superheated steam treatment of hierarchical zeolites can be used to alter nanosheet morphology and regulate external surface catalytic activity while preserving micro- and mesoporosity, and micropore reaction rates.

4.
JACS Au ; 2(5): 1123-1133, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35647588

RESUMO

Precise control of electron density at catalyst active sites enables regulation of surface chemistry for the optimal rate and selectivity to products. Here, an ultrathin catalytic film of amorphous alumina (4 nm) was integrated into a catalytic condenser device that enabled tunable electron depletion from the alumina active layer and correspondingly stronger Lewis acidity. The catalytic condenser had the following structure: amorphous alumina/graphene/HfO2 dielectric (70 nm)/p-type Si. Application of positive voltages up to +3 V between graphene and the p-type Si resulted in electrons flowing out of the alumina; positive charge accumulated in the catalyst. Temperature-programmed surface reaction of thermocatalytic isopropanol (IPA) dehydration to propene on the charged alumina surface revealed a shift in the propene formation peak temperature of up to ΔT peak∼50 °C relative to the uncharged film, consistent with a 16 kJ mol-1 (0.17 eV) reduction in the apparent activation energy. Electrical characterization of the thin amorphous alumina film by ultraviolet photoelectron spectroscopy and scanning tunneling microscopy indicates that the film is a defective semiconductor with an appreciable density of in-gap electronic states. Density functional theory calculations of IPA binding on the pentacoordinate aluminum active sites indicate significant binding energy changes (ΔBE) up to 60 kJ mol-1 (0.62 eV) for 0.125 e- depletion per active site, supporting the experimental findings. Overall, the results indicate that continuous and fast electronic control of thermocatalysis can be achieved with the catalytic condenser device.

5.
Chem Sci ; 11(13): 3501-3510, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-34109022

RESUMO

Catalytic enhancement of chemical reactions via heterogeneous materials occurs through stabilization of transition states at designed active sites, but dramatically greater rate acceleration on that same active site can be achieved when the surface intermediates oscillate in binding energy. The applied oscillation amplitude and frequency can accelerate reactions orders of magnitude above the catalytic rates of static systems, provided the active site dynamics are tuned to the natural frequencies of the surface chemistry. In this work, differences in the characteristics of parallel reactions are exploited via selective application of active site dynamics (0 < ΔU < 1.0 eV amplitude, 10-6 < f < 104 Hz frequency) to control the extent of competing reactions occurring on the shared catalytic surface. Simulation of multiple parallel reaction systems with broad range of variation in chemical parameters revealed that parallel chemistries are highly tunable in selectivity between either pure product, even when specific products are not selectively produced under static conditions. Two mechanisms leading to dynamic selectivity control were identified: (i) surface thermodynamic control of one product species under strong binding conditions, or (ii) catalytic resonance of the kinetics of one reaction over the other. These dynamic parallel pathway control strategies applied to a host of simulated chemical conditions indicate significant potential for improving the catalytic performance of many important industrial chemical reactions beyond their existing static performance.

6.
Matter ; 3(3): 805-823, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32838298

RESUMO

This work describes the design and implementation of an automated device for catalytic materials testing by direct modifications to a gas chromatograph (GC). The setup can be operated as a plug-flow isothermal reactor and enables the control of relevant parameters such as reaction temperature and reactant partial pressures directly from the GC. High-quality kinetic data (including reaction rates, product distributions, and activation barriers) can be obtained at almost one-tenth of the fabrication cost of analogous commercial setups. With these key benefits including automation, low cost, and limited experimental equipment instrumentation, this implementation is intended as a high-throughput catalyst screening reactor that can be readily utilized by materials synthesis researchers to assess the catalytic properties of their synthesized structures in vapor-phase chemistries.

7.
ACS Cent Sci ; 4(9): 1235-1243, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30276258

RESUMO

Confinement of hydrocarbons in nanoscale pockets and pores provides tunable capability for controlling molecules in catalysts, sorbents, and membranes for reaction and separation applications. While computation of the enthalpic interactions of hydrocarbons in confined spaces has improved, understanding and predicting the entropy of confined molecules remains a challenge. Here we show, using a set of nine aluminosilicate zeolite frameworks with broad variation in pore and cavity structure, that the entropy of adsorption can be predicted as a linear combination of rotational and translational entropy. The extent of entropy lost upon adsorption is predicted using only a single material descriptor, the occupiable volume (V occ). Predictive capability of confined molecular entropy permits an understanding of the relation with adsorption enthalpy, the ability to computationally screen microporous materials, and an understanding of the role of confinement on the kinetics of molecules in confined spaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA