Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
BMC Neurol ; 22(1): 356, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127656

RESUMO

BACKGROUND: The etiological and pathophysiological factors of learning disorder (LD) and attention deficit hyperactivity disorder (ADHD) are currently not well understood. These disorders disrupt some cognitive abilities. Identifying biomarkers for these disorders is a cornerstone to their proper management. Kynurenine (KYN) and oxidative stress markers have been reported to influence some cognitive abilities. Therefore, the aim was to measure the level of KYN and some oxidative stress indicators in children with LD with and without ADHD and to investigate their correlations with the abilities of children with LD. METHODS: The study included 154 participants who were divided into 3 groups: one for children who have LD (N = 69); another for children with LD and ADHD (N = 31); and a group for neurotypical (NT) children (N = 54). IQ testing, reading, writing, and other ability performance evaluation was performed for children with LD. Measuring plasma levels of KYN, malondialdehyde, glutathione peroxidase, and superoxide dismutase by enzyme-linked immunosorbent assay was performed for all participants. RESULTS: Some IQ measures and learning skills differed between the first two groups. The biochemical measures differed between children with LD (with and without ADHD) and NT children (p < 0.001). However, the biochemical measures did not show a significant statistical difference between the first two groups. KYN and glutathione peroxidase levels were correlated with one-minute writing and at-risk quotient, respectively (p = 0.03;0.04). KYN and malondialdehyde showed the highest sensitivity and specificity values. CONCLUSION: These biochemical measures could be involved or have a role in the abilities' performance of children with specific learning disorder.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Deficiências da Aprendizagem , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Criança , Glutationa Peroxidase , Humanos , Cinurenina , Deficiências da Aprendizagem/diagnóstico , Malondialdeído , Estresse Oxidativo , Superóxido Dismutase
2.
Neuroradiology ; 62(4): 525-531, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31955236

RESUMO

PURPOSE: To investigate the correlation between the diffusion tensor imaging (DTI) measures and the reading, spelling, writing, rapid naming, memory, and motor abilities in Arabic dyslexic children. This could verify the influence of possible white matter alterations on the abilities of those children. METHODS: Twenty native Arabic-speaking children with dyslexia (15 males and 5 females; 8.2 years ± 1) underwent DTI of the brain on 1.5 T scanner. Diffusion-weighted images were acquired in 32 noncollinear direction. Tractography of the arcuate fasciculus (AF) was performed. Region of interest (ROI)-based approach was also used. Regions encompass superior longitudinal fasciculus (SLF), anterior and superior corona radiata (CR), and posterior limb of internal capsule (PLIC) were analyzed. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were measured. The aptitudes of those children were evaluated by the dyslexia assessment test. These abilities were statistically correlated with the FA and ADC of the AF and other ROIs. RESULTS: The reduction of FA of right AF was related to worse overall reading and related abilities performance. The ADC of right SLF was negatively correlated with memory abilities. The ADC of right PLIC was positively correlated with writing performance. Other relations were also found. CONCLUSION: White matter microstructural DTI measurements in the right AF, right PLIC, SLF, and left anterior and superior CR are correlated to reading, spelling, writing, memory, and rapid naming abilities of the participants. The DTI measures could be promising regarding their use as a biomarker for follow-up in developmental dyslexia.


Assuntos
Cognição , Imagem de Tensor de Difusão , Dislexia , Substância Branca/diagnóstico por imagem , Anisotropia , Núcleo Arqueado do Hipotálamo/diagnóstico por imagem , Criança , Egito , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Testes Neuropsicológicos
3.
Am J Med Genet A ; 167A(1): 128-36, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25425358

RESUMO

We describe a large family from the Gaza Strip presented with multiple congenital anomalies. The proband was presented with intellectual disability and multiple congenital anomalies including cleft palate, low-set ears, everted upper lip, diaphragmatic hernia, and arthrogryposis. Pedigree analysis showed 19 affected patients over five generations, only 6 were alive and 11 individuals were obligate carriers. The proband had an apparently normal karyotype, although FISH studies showed a derivative chromosome 1 with duplication of 16p13.3 and deletion of the 1p subtelomere. Her father however had a balanced translocation. The seven affected patients had a similar phenotype, one of them died before genetic testing was carried out and the living six patients had the same unbalanced translocation. Array CGH revealed an 8.8 Mb duplication in 16p13 and 200,338 bp deletion in 1p36.3. Accordingly, intellectual disability, hypertelorism, cupped ears, everted upper lip, and limb anomalies were presenting clinical features of the 16p13 duplication syndrome while deep set eyes were perhaps related to the 1p terminal deletion. Prevention of recurrent intellectual disability in this family can be achieved through carrier detection and prenatal genetic diagnosis.


Assuntos
Cromossomos Humanos Par 16/genética , Cromossomos Humanos Par 1/genética , Características da Família , Deficiência Intelectual/genética , Duplicações Segmentares Genômicas/genética , Translocação Genética , Criança , Pré-Escolar , Hibridização Genômica Comparativa , Análise Citogenética , Feminino , Humanos , Hibridização in Situ Fluorescente , Lactente , Masculino , Linhagem , Fenótipo
4.
Int J Dev Neurosci ; 84(5): 368-380, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38712701

RESUMO

Attention deficit hyperactivity disorder (ADHD) with and without subclinical epileptogenic discharges (SED) have been suggested to negatively affect cognitive abilities of children with ADHD. The role of brain-derived neurotrophic factor (BDNF) and its precursor proBDNF in ADHD is in need of being investigated. The aims were to evaluate the levels of serum BDNF, proBDNF and the proBDNF/BDNF ratio in addition to the potential impacts of SED on the children's cognitive abilities and the severity of ADHD. The included participants with ADHD were 30 children with normal electroencephalogram (EEG) (G1) and 30 children with SED (G2), together with 30 healthy children (G3). The cognitive abilities and severity of the disorder were evaluated. The biochemical measures were determined by ELISA. The presence of coexisting SED and nocturnal enuresis has led to a deleterious effect on cognitive processes but not on the severity. The focal epileptogenic discharge was the most common among children in G2. The levels of BDNF in Groups 1 and 2 were less than those in G3. The higher proBDNF/BDNF ratio could be related to the low BDNF levels rather than high proBDNF levels. The findings of this study highlight the importance of investigating the presence of SED and nocturnal enuresis in children with ADHD. Targeting strengthening of cognitive abilities in children with coexisting ADHD and SED is advised. The role of proBDNF in the pathophysiology of ADHD needs further investigation.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Fator Neurotrófico Derivado do Encéfalo , Eletroencefalografia , Humanos , Fator Neurotrófico Derivado do Encéfalo/sangue , Transtorno do Deficit de Atenção com Hiperatividade/sangue , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Masculino , Feminino , Criança , Precursores de Proteínas/sangue , Testes Neuropsicológicos , Cognição/fisiologia , Transtornos Cognitivos/sangue , Transtornos Cognitivos/etiologia , Adolescente
5.
Pediatr Neurol ; 151: 104-110, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154236

RESUMO

BACKGROUND: Individuals with childhood apraxia of speech (CAS) were reported to have genetic variations related to gluten sensitivity and some neuroanatomic changes, which could be associated with alterations in neurotransmitters levels such as glutamate and gamma-aminobutyric acid (GABA). The aim was to measure the levels of antigliadin immunoglobulin A (IgA) antibody, glutamate, and GABA in the plasma of children with CAS compared with children with delayed language development (DLD) and neurotypical (NT) children. METHODS: The participants (N = 120) were in three groups: Group I for CAS (N = 30), Group II for DLD (N = 60), and Group III for NT (N = 30). The abilities of children in Groups I and II were evaluated. The plasma levels of antigliadin IgA, glutamate, and GABA were determined by enzyme-linked immunosorbent assay. RESULTS: The intelligence quotient and expressive language age in Group I were low compared with Group II (P = 0.001; 0.004). The levels of antigliadin IgA and glutamate in Group I were higher compared with the other two groups, whereas the level of GABA was lower (P < 0.0001). An imbalance between glutamate and GABA was found in Group I. In Group II, no measures differed from NTs except lower GABA levels (P = 0.0007). CONCLUSIONS: The elevated levels of antigliadin IgA antibody and glutamate demonstrated high sensitivity and specificity, differentiating children with CAS from children with DLD and NT children. The low levels of GABA contributed to the imbalance between the excitatory and inhibitory neurotransmitters' levels detected in children with CAS.


Assuntos
Apraxias , Síndromes de Malabsorção , Criança , Humanos , Fala , Ácido Glutâmico , Imunoglobulina A , Glutens , Ácido gama-Aminobutírico , Neurotransmissores
6.
J Mol Neurosci ; 73(1): 39-46, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36550387

RESUMO

Brain-derived neurotrophic factor (BDNF) plays an essential role in neuronal survival, especially in areas responsible for memory and learning. The BDNF Val66Met polymorphism has been described as a cognitive modifier in people with neuropsychiatric disorders. BDNF levels have been found to be low in children with learning disorder (LD). However, Val66Met polymorphism has not been studied before in such children. The aim was to investigate the presence of BDNF val66Met polymorphism in a group of children with specific LD and to verify its impact on their cognitive abilities. The participants in this cross-sectional study (N = 111) were divided into two groups: one for children with LD and the other for neurotypical (NT) ones. Children with LD (N = 72) were diagnosed according to the DSM-5 criteria. Their abilities were evaluated using Stanford-Binet Intelligence Scale, dyslexia assessment test, Illinois Test of Psycholinguistic Abilities, and phonological awareness test. Genotyping of BDNF Val66Met polymorphism was performed for all participants. The frequency of the Met allele was 26% among children with LD (6 children had homozygous, 26 had heterozygous genotype). The percentage of participants with deficits in reading, writing, and phonemic segmentation was higher in Met allele carriers when compared to non-Met allele carriers in LD group. The frequency of Met allele among NT children was 3.85% (0 homozygous, 3 children had heterozygous genotype) (p = 0.00001). The high frequency of Val66Met polymorphism among children with LD introduces the BDNF gene as a genetic modifier of learning performance in some children who manifest specific learning disorder (developmental dyslexia).


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Deficiências da Aprendizagem , Humanos , Criança , Fator Neurotrófico Derivado do Encéfalo/genética , Polimorfismo de Nucleotídeo Único , Estudos Transversais , Genótipo
7.
Ibrain ; 9(1): 32-42, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37786524

RESUMO

The presence of comorbid Irlen syndrome (IS) in children with developmental dyslexia (DD) may have an impact on their reading and cognitive abilities. Furthermore, the brain-derived neurotrophic factor (BDNF) was reported to be expressed in brain areas involved in cognitive and visual processing. The aim of this study was to evaluate some cognitive abilities of a group of dyslexic children with IS and to measure and compare the plasma BDNF level to dyslexic children without IS and neurotypical (NT) children. The participants were 60 children with DD (30 in the DD + IS group; 30 in the DD group) and 30 NT children. The Irlen reading perceptual scale, the Stanford Binet intelligence scale, 4th ed, the dyslexia assessment test, and the Illinois test of psycholinguistic abilities were used. The BDNF level was measured using the enzyme-linked immunosorbent assay. One-minute writing and visual closure deficits were more prevalent, while phonemic segmentation deficits were less prevalent in the DD + IS group compared to the DD group. The BDNF level in the DD groups was lower than that in NT children (p < 0.001). Some reading and non-reading tasks were influenced by the presence of a coexisting IS. The reduced BDNF level could play a role in the deficits noticed in the abilities of children with DD.

8.
Artigo em Inglês | MEDLINE | ID: mdl-30546250

RESUMO

BACKGROUND: Ubiquinone has antioxidant properties and has been linked to cognitive performance in some neuropsychiatric disorders. Its role in specific learning disorder manifestations has not been previously investigated. Therefore, the aim of this study was to measure the blood levels of ubiquinone in a group of children with specific learning disorder in comparison to typically developing children and to investigate the correlation between ubiquinone levels in children with specific learning disorder and some of their intellectual capabilities, reading, spelling and writing performance. METHODS: The study included 71 native Arabic speaking children: 31 in the specific learning disorder group and 40 in the typically developing (TD) group. The abilities of the children with specific learning disorder were evaluated by the Stanford-Binet Intelligence Scale-4th edition, the Dyslexia Assessment Test, and the Illinois Test of Psycholinguistic Abilities. The level of ubiquinone was measured in both groups by ELISA. Correlation between some aptitudes of children with specific learning disorder and the ubiquinone level was performed. RESULTS: The blood levels of ubiquinone in the children with specific learning disorder group were less than those in the TD group. Correlation analysis revealed a significant positive correlation between ubiquinone and the scores of backward digit span abilities. CONCLUSIONS: Ubiquinone has a role in the auditory working memory performance of children with specific learning disorder (with impairment in reading). The decreased levels of ubiquinone in this sample of children with specific learning disorder could have participated in the pathogenesis of this disorder.

9.
JAMA Psychiatry ; 74(3): 293-299, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28097321

RESUMO

Importance: Autosomal recessive inherited neurodevelopmental disorders are highly heterogeneous, and many, possibly most, of the disease genes are still unknown. Objectives: To promote the identification of disease genes through confirmation of previously described genes and presentation of novel candidates and provide an overview of the diagnostic yield of exome sequencing in consanguineous families. Design, Setting, and Participants: Autozygosity mapping in families and exome sequencing of index patients were performed in 152 consanguineous families (the parents descended from a same ancestor) with at least 1 offspring with intellectual disability (ID). The study was conducted from July 1, 2008, to June 30, 2015, and data analysis was conducted from July 1, 2015, to August 31, 2016. Results: Of the 152 consanguineous families enrolled, 1 child (in 45 families [29.6%]) or multiple children (107 families [70.4%]) had ID; additional features were present in 140 of the families (92.1%). The mean (SD) age of the children was 10.3 (9.0) years, and 171 of 297 (57.6%) were male. In 109 families (71.7%), potentially protein-disrupting and clinically relevant variants were identified. Of these, a clear clinical genetic diagnosis was made in 56 families (36.8%) owing to 57 (likely) pathogenic variants in 50 genes already established in neurodevelopmental disorders (46 autosomal recessive, 2 X-linked, and 2 de novo) or in 7 previously proposed recessive candidates. In 5 of these families, potentially treatable disorders were diagnosed (mutations in PAH, CBS, MTHFR, CYP27A1, and HIBCH), and in 1 family, 2 disease-causing homozygous variants in different genes were identified. In another 48 families (31.6%), 52 convincing recessive variants in candidate genes that were not previously reported in regard to neurodevelopmental disorders were identified. Of these, 14 were homozygous and truncating in GRM7, STX1A, CCAR2, EEF1D, GALNT2, SLC44A1, LRRIQ3, AMZ2, CLMN, SEC23IP, INIP, NARG2, FAM234B, and TRAP1. The diagnostic yield was higher in individuals with severe ID (35 of 77 [45.5%]), in multiplex families (42 of 107 [39.3%]), in patients with additional features (30 of 70 [42.9%]), and in those with remotely related parents (15 of 34 [44.1%]). Conclusions and Relevance: Because of the high diagnostic yield of 36.8% and the possibility of identifying treatable diseases or the coexistence of several disease-causing variants, using exome sequencing as a first-line diagnostic approach in consanguineous families with neurodevelopmental disorders is recommended. Furthermore, the literature is enriched with 52 convincing candidate genes that are awaiting confirmation in independent families.


Assuntos
Consanguinidade , Exoma/genética , Genes Recessivos/genética , Estudos de Associação Genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Transtornos do Neurodesenvolvimento/genética , Análise de Sequência de DNA , Criança , Aberrações Cromossômicas , Análise Mutacional de DNA , Feminino , Alemanha , Homozigoto , Humanos , Masculino
10.
J Family Med Prim Care ; 3(3): 275-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25374870

RESUMO

Microtia is a congenital anomaly that is found with different prevalence among various populations. The exact etiology of ear anomalies is still unknown. We describe a new additional family with this rare disorder; Johnson-McMillin syndrome (JMS) where mother, son, and distant grandmother have multiple features of JMS in the form of microtia, facial asymmetry, ear malformation, hearing defect, and hypotrichosis. Variable presentations in this family could be referred to phenotype variation supporting an autosomal dominant pattern of inheritance. We observed that the mother was very sad and suffered from feelings of guilt. We found that she had isolated herself from family and community out of fear of being stigmatized and hurt. We concluded that the occurrence of microtia is of public health importance, adhering to traditional marriage customs in Egypt increases women's risk of giving birth to a disabled child, yet the mothers are blamed and shamed for their children's birth defects by their husbands, families, and communities, while the fathers are not stigmatized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA