Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Curr Opin Clin Nutr Metab Care ; 25(1): 50-55, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725313

RESUMO

PURPOSE OF REVIEW: Phosphatases of regenerating liver (PRL) are dual-specificity phosphatases and comprise three members, PRL-1, -2 and -3. Despite the importance of PRLs as oncoproteins, there is no consensus function for this family of phosphatases. In the current review paper, we summarize recent findings on the role of PRLs in metabolic regulation. RECENT FINDINGS: Reprogramming of cellular metabolism is a cancer hallmark. Glucose is the major source of energy in cells. Glucose metabolism occurs through the glycolysis and can continue through the pathways such as serine synthesis pathway or the tricarboxylic acid cycle (TCA). Magnesium (Mg2+), the second most abundant cation in cells, plays an essential role in energy production by acting as a cofactor for most enzymes involved in glycolysis and in TCA. Recent findings have shown that the PRL family has a role in metabolic reprogramming mediated by (1) Mg2+ homeostasis, (2) shifting the energy source preference to glucose consumption and fueling serine/glycine pathway and (3) regulating PI3 kinase/Mammalian target of rapamycin complex. Both the phosphatase and nonphosphatase activity of PRLs appear to be important for its oncogenic role. SUMMARY: The PRL family contributes to the metabolic plasticity of cancer cells and, thereby, allows cancer cells to meet the high metabolic demands required for cell proliferation.


Assuntos
Neoplasias , Proteínas Tirosina Fosfatases , Glicina , Humanos , Fígado , Serina
2.
FASEB J ; 35(3): e21344, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33566385

RESUMO

Cancer cells often depend on microenvironment signals from molecules such as cytokines for proliferation and metabolic adaptations. PRL-3, a cytokine-induced oncogenic phosphatase, is highly expressed in multiple myeloma cells and associated with poor outcome in this cancer. We studied whether PRL-3 influences metabolism. Cells transduced to express PRL-3 had higher aerobic glycolytic rate, oxidative phosphorylation, and ATP production than the control cells. PRL-3 promoted glucose uptake and lactate excretion, enhanced the levels of proteins regulating glycolysis and enzymes in the serine/glycine synthesis pathway, a side branch of glycolysis. Moreover, mRNAs for these proteins correlated with PRL-3 expression in primary patient myeloma cells. Glycine decarboxylase (GLDC) was the most significantly induced metabolism gene. Forced GLDC downregulation partly counteracted PRL-3-induced aerobic glycolysis, indicating GLDC involvement in a PRL-3-driven Warburg effect. AMPK, HIF-1α, and c-Myc, important metabolic regulators in cancer cells, were not mediators of PRL-3's metabolic effects. A phosphatase-dead PRL-3 mutant, C104S, promoted many of the metabolic changes induced by wild-type PRL-3, arguing that important metabolic effects of PRL-3 are independent of its phosphatase activity. Through this study, PRL-3 emerges as one of the key mediators of metabolic adaptations in multiple myeloma.


Assuntos
Mieloma Múltiplo/metabolismo , Proteínas de Neoplasias/fisiologia , Proteínas Tirosina Fosfatases/fisiologia , Trifosfato de Adenosina/biossíntese , Linhagem Celular Tumoral , Proliferação de Células , Glicina/metabolismo , Glicina Desidrogenase (Descarboxilante)/fisiologia , Glicólise , Humanos , Serina/metabolismo
3.
Eur J Haematol ; 109(1): 31-40, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35276027

RESUMO

Cancer cells can convert proto-oncoproteins into oncoproteins by increasing the expression of genes that are oncogenic when expressed at high levels. Such genes can promote oncogenesis without being mutated. To find overexpressed genes in cancer cells from patients with multiple myeloma, we retrieved mRNA expression data from the CoMMpass database and ranked genes by their expression levels. We grouped the most highly expressed genes based on a set of criteria and we discuss the role a selection of them can play in the disease pathophysiology. The list was highly concordant with a similar list based on mRNA expression data from the PADIMAC study. Many well-known "myeloma genes" such as MCL1, CXCR4, TNFRSF17, SDC1, SLAMF7, PTP4A3, and XBP1 were identified as highly expressed, and we believe that hitherto unrecognized key players in myeloma pathogenesis are also enriched on the list. Highly expressed genes in malignant plasma cells that were absent or expressed at only a low level in healthy plasma cells included IFI6, IFITM1, PTP4A3, SIK1, ALDOA, ATP5MF, ATP5ME, and PSMB4. The ambition of this article is not to validate the role of each gene but to serve as a guide for studies aiming at identifying promising treatment targets.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Oncogenes , Plasmócitos/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , RNA Mensageiro/metabolismo
4.
J Transl Med ; 14: 71, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26975394

RESUMO

BACKGROUND: PRL-3 is a phosphatase implicated in oncogenesis in multiple cancers. In some cancers, notably carcinomas, PRL-3 is also associated with inferior prognosis and increased metastatic potential. In this study we investigated the expression of PRL-3 mRNA in fresh-frozen samples from patients undergoing radical prostatectomy because of prostate cancer (PC) and the biological function of PRL-3 in prostate cancer cells. METHODS: Samples from 41 radical prostatectomy specimens (168 samples in total) divided into low (Gleason score ≤ 6), intermediate (Gleason score = 7) and high (Gleason score ≥ 8) risk were analyzed with gene expression profiling and compared to normal prostate tissue. PRL-3 was identified as a gene with differential expression between healthy and cancerous tissue in these analyses. We used the prostate cancer cell lines PC3 and DU145 and a small molecular inhibitor of PRL-3 to investigate whether PRL-3 had a functional role in cancer. Relative ATP-measurement and thymidine incorporation were used to assess the effect of PRL-3 on growth of the cancer cells. We performed an in vitro scratch assay to investigate the involvement of PRL-3 in migration. Immunohistochemistry was used to identify PRL-3 protein in prostate cancer primary tumor and corresponding lymph node metastases. RESULTS: Compared to normal prostate tissue, the prostate cancer tissue expressed a significantly higher level of PRL-3. We found PRL-3 to be present in both PC3 and DU145, and that inhibition of PRL-3 led to growth arrest and apoptosis in these two cell lines. Inhibition of PRL-3 led to reduced migration of the PC3 cells. Immunohistochemistry showed PRL-3 expression in both primary tumor and corresponding lymph node metastases. CONCLUSIONS: PRL-3 mRNA was expressed to a greater extent in prostate cancer tissue compared to normal prostate tissue. PRL-3 protein was expressed in both prostate cancer primary tumor and corresponding lymph node metastases. The results from our in vitro assays suggest that PRL-3 promotes growth and migration in prostate cancer. In conclusion, these results imply that PRL-3 has a role in the pathogenesis of prostate cancer.


Assuntos
Movimento Celular , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Tirosina Fosfatases/metabolismo , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Loci Gênicos , Humanos , Metástase Linfática , Masculino , Proteínas de Neoplasias/genética , Proteínas Tirosina Fosfatases/genética , Análise Serial de Tecidos
5.
Anticancer Drugs ; 26(5): 487-97, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25603020

RESUMO

Silibinin, with a strong antioxidant activity and a weak cytotoxic property, is considered a candidate for cancer prevention. As there is no information on its effect on breast cancer tumor-initiating cells [cancer stem cells (CSCs)] in a 3D culture model, which more closely mimic natural tissues, we carried out this study to determine whether silibinin can target breast CSCs in MDA-MB-468 cells cultured under 3D and 2D conditions. Silibinin was added to culture medium of MDA-MB-468 at a half maximal inhibitory concentration (IC50) dose in 2D and 3D models. Then, stemness properties were assessed using colony and sphere-formation tests. Flow cytometry and real-time PCR were used to determine the different expression levels of stem cell-related marker at protein and mRNA levels under both culture conditions. Our results showed that silibinin inhibits cell growth in a dose-dependent manner by induction of apoptosis, alteration of the cell cycle, reduction of stemness properties and function, and induction of tumoral differentiation. The mechanism of silibinin action and also the response of tumor cells differed when cells were cultured in a 3D model compared with a 2D model. Silibinin may potentially target breast CSCs. Moreover, tumor-initiating cells are more sensitive to silibinin in a 3D culture than in a 2D culture.


Assuntos
Anticarcinógenos/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Silimarina/farmacologia , Neoplasias da Mama , Técnicas de Cultura de Células , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Células-Tronco Neoplásicas/patologia , Silibina
6.
Front Immunol ; 15: 1411352, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39161773

RESUMO

Multiple myeloma (MM) is a hematological cancer marked by plasma cell accumulation in the bone marrow. Despite treatment advancements, MM remains incurable in most patients. MM-associated immune dysregulation fosters disease progression, prompting research into immunotherapy to combat the disease. An area of immunotherapy investigation is the design of myeloma vaccine therapy to reverse tumor-associated immune suppression and elicit tumor-specific immune responses to effectively target MM cells. This article reviews vaccine immunotherapy for MM, categorizing findings by antigen type and delivery method. Antigens include idiotype (Id), tumor-associated (TAA), tumor-specific (TSA), and whole tumor lysate. Myeloma vaccination has so far shown limited clinical efficacy. However, further studies are essential to optimize various aspects, including antigen and patient selection, vaccine timing and sequencing, and rational combinations with emerging MM treatments.


Assuntos
Vacinas Anticâncer , Mieloma Múltiplo , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/terapia , Humanos , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Animais , Antígenos de Neoplasias/imunologia , Imunoterapia/métodos
7.
J Immunother Cancer ; 11(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37607769

RESUMO

BACKGROUND: Multiple myeloma (MM) cancers originate from plasma cells that have passed through the germinal center reaction where somatic hypermutation of Ig V regions takes place. Myeloma protein V regions often express many mutations and are thus a rich source of neoantigens (traditionally called idiotopes (Id)). Therefore, these are highly tumor-specific and excellent targets for immunotherapy. METHODS: We have developed a DNA Id vaccine which as translated protein targets conventional dendritic cells (cDC) for CCL3-mediated delivery of myeloma protein V regions in a single-chain fragment variable (scFv) format. Vaccine efficacy was studied in the mouse MM model, mineral oil-induced plasmacytoma 315.BM. RESULTS: The Id vaccine protected mice against a challenge with MM cells. Moreover, the vaccine had a therapeutic effect. However, in some of the vaccinated mice, MM cells not producing H chains escaped rejection, resulting in free light chain (FLC) MM. Depletion of CD8+ T cells abrogated vaccine efficacy, and protection was observed to be dependent on cDC1s, using Batf3-/- mice. Modifications of scFv in the vaccine demonstrated that CD8+ T cells were specific for two mutated VH sequences. CONCLUSIONS: VH neoantigen-specific CD8+ T cells elicited by CCL3-containing Id vaccines had a therapeutic effect against MM in a mouse model. MM cells could escape rejection by losing expression of the H chain, thus giving rise to FLC MM.


Assuntos
Mieloma Múltiplo , Vacinas de DNA , Animais , Camundongos , Mieloma Múltiplo/terapia , Linfócitos T CD8-Positivos , Imunoterapia , Células Dendríticas
8.
Oncotarget ; 13: 1175-1186, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36268559

RESUMO

BACKGROUND: Multiple myeloma (MM) is an incurable malignancy of plasma cells. The serine protease matriptase is frequently dysregulated in human carcinomas, which facilitates tumor progression and metastatic dissemination. The importance of matriptase in hematological malignancies is yet to be clarified. In this study, we aimed to characterize the role of matriptase in MM. MATERIALS AND METHODS: mRNA expression of matriptase and its inhibitors hepatocyte growth factor activator inhibitor (HAI)-1 and HAI-2 was studied in primary MM cells from patient samples and human myeloma cell lines (HMCLs). We further investigated the effect of matriptase on migration and proliferation of myeloma cells in vitro. By use of the CoMMpass database, we assessed the clinical relevance of matriptase in MM patients. RESULTS: Matriptase was expressed in 96% of patient samples and all HMCLs tested. Overexpression of matriptase in vitro reduced proliferation, and significantly decreased cytokine-induced migration. Conversely, matriptase knockdown significantly enhanced migration. Mechanistically, overexpression of matriptase inhibited activation of Src kinase. CONCLUSIONS: Our findings may suggest a novel role of matriptase as a tumor suppressor in MM pathogenesis.


Assuntos
Mieloma Múltiplo , Humanos , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Mieloma Múltiplo/genética , Serina Proteases , RNA Mensageiro/metabolismo , Quinases da Família src , Citocinas , Proliferação de Células
9.
Cancer Lett ; 501: 105-113, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33290866

RESUMO

Many cell signaling pathways are activated or deactivated by protein tyrosine phosphorylation and dephosphorylation, catalyzed by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), respectively. Even though PTPs are as important as PTKs in this process, their role has been neglected for a long time. Multiple myeloma (MM) is a cancer of plasma cells, which is characterized by production of monoclonal immunoglobulin, anemia and destruction of bone. MM is still incurable with high relapse frequency after treatment. In this review, we highlight the PTPs that were previously described in MM or have a role that can be relevant in a myeloma context. Our purpose is to show that despite the importance of PTPs in MM pathogenesis, many unanswered questions in this field need to be addressed. This might help to detect novel treatment strategies for MM patients.


Assuntos
Mieloma Múltiplo/enzimologia , Proteínas Tirosina Fosfatases/metabolismo , Animais , Humanos
10.
Exp Hematol Oncol ; 10(1): 3, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397437

RESUMO

BACKGROUND: Multiple myeloma (MM) is a hematological malignancy characterized by the clonal expansion of plasma cells in the bone marrow. To date, this disease is still incurable and novel therapeutic approaches are required. Phosphoglycerate dehydrogenase (PHGDH) is the first and rate-limiting enzyme in the de novo serine synthesis pathway, and it has been attributed to bortezomib-resistance in MM. METHODS: Two different PHGDH inhibitors, CBR5884 and NCT-503, were tested against human myeloma cell lines, primary MM cells from patients, and peripheral blood mononuclear cells isolated from healthy donors. The PHGDH inhibitors were then tested in combination with proteasome inhibitors in different MM cell lines, including proteasome-resistant cell lines. Furthermore, we confirmed the effects of PHGDH inhibition through knocking down PHGDH and the effect of NCT-503 in vivo in the 5T33MM mouse model. RESULTS: All the tested myeloma cell lines expressed PHGDH and were sensitive to doses of NCT-503 that were tolerated by peripheral blood mononuclear cells isolated from healthy donors. Upon testing bortezomib in combination with NCT-503, we noticed a clear synergy in several HMCLs. The sensitivity to bortezomib also increased after PHGDH knockdown, mimicking the effect of NCT-503 treatment. Interestingly, targeting PHGDH reduced the intracellular redox capacity of the cells. Furthermore, combination treatment with NCT-503 and bortezomib exhibited a therapeutic advantage in vivo. CONCLUSIONS: Our study shows the therapeutic potential of targeting PHGDH in MM, and suggest it as a way to overcome the resistance to proteasome inhibitors.

11.
FEBS J ; 288(23): 6700-6715, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34092011

RESUMO

Multiple myeloma (MM) is an incurable hematologic malignancy resulting from the clonal expansion of plasma cells. MM cells are interacting with components of the bone marrow microenvironment such as cytokines to survive and proliferate. Phosphatase of regenerating liver (PRL)-3, a cytokine-induced oncogenic phosphatase, is highly expressed in myeloma patients and is a mediator of metabolic reprogramming of cancer cells. To find novel pathways and genes regulated by PRL-3, we characterized the global transcriptional response to PRL-3 overexpression in two MM cell lines. We used pathway enrichment analysis to identify pathways regulated by PRL-3. We further confirmed the hits from the enrichment analysis with in vitro experiments and investigated their function. We found that PRL-3 induced expression of genes belonging to the type 1 interferon (IFN-I) signaling pathway due to activation of signal transducer and activator of transcription (STAT) 1 and STAT2. This activation was independent of autocrine IFN-I secretion. The increase in STAT1 and STAT2 did not result in any of the common consequences of increased IFN-I or STAT1 signaling in cancer. Knockdown of STAT1/2 did not affect the viability of the cells, but decreased PRL-3-induced glycolysis. Interestingly, glucose metabolism contributed to the activation of STAT1 and STAT2 and expression of IFN-I-stimulated genes in PRL-3-overexpressing cells. In summary, we describe a novel signaling circuit where the key IFN-I-activated transcription factors STAT1 and STAT2 are important drivers of the increase in glycolysis induced by PRL-3. Subsequently, increased glycolysis regulates the IFN-I-stimulated genes by augmenting the activation of STAT1/2.


Assuntos
Glicólise/genética , Proteínas de Neoplasias/genética , Proteínas Tirosina Fosfatases/genética , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT2/genética , Transdução de Sinais/genética , Ativação Transcricional , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Citocinas/genética , Citocinas/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , RNA-Seq/métodos , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo
12.
J Immunother Cancer ; 8(1)2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32409420

RESUMO

BACKGROUND: PD1/PDL1-directed therapies have been unsuccessful for multiple myeloma (MM), an incurable cancer of plasma cells in the bone marrow (BM). Therefore, other immune checkpoints such as extracellular adenosine and its immunosuppressive receptor should be considered. CD39 and CD73 convert extracellular ATP to adenosine, which inhibits T-cell effector functions via the adenosine receptor A2A (A2AR). We set out to investigate whether blocking the adenosine pathway could be a therapy for MM. METHODS: Expression of CD39 and CD73 on BM cells from patients and T-cell proliferation were determined by flow cytometry and adenosine production by Liquid chromatograpy-mass spectrometry (HPCL/MS). ENTPD1 (CD39) mRNA expression was determined on myeloma cells from patients enrolled in the publicly available CoMMpass study. Transplantable 5T33MM myeloma cells were used to determine the effect of inhibiting CD39, CD73 and A2AR in mice in vivo. RESULTS: Elevated level of adenosine was found in BM plasma of MM patients. Myeloma cells from patients expressed CD39, and high gene expression indicated reduced survival. CD73 was found on leukocytes and stromal cells in the BM. A CD39 inhibitor, POM-1, and an anti-CD73 antibody inhibited adenosine production and reduced T-cell suppression in vitro in coculture of myeloma and stromal cells. Blocking the adenosine pathway in vivo with a combination of Sodium polyoxotungstate (POM-1), anti-CD73, and the A2AR antagonist AZD4635 activated immune cells, increased interferon gamma production, and reduced the tumor load in a murine model of MM. CONCLUSIONS: Our data suggest that the adenosine pathway can be successfully targeted in MM and blocking this pathway could be an alternative to PD1/PDL1 inhibition for MM and other hematological cancers. Inhibitors of the adenosine pathway are available. Some are in clinical trials and they could thus reach MM patients fairly rapidly.


Assuntos
5'-Nucleotidase/metabolismo , Trifosfato de Adenosina/metabolismo , Adenosina/metabolismo , Antígenos CD/metabolismo , Apirase/metabolismo , Mieloma Múltiplo/patologia , Receptor A2A de Adenosina/química , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/metabolismo , Prognóstico , Receptor A2A de Adenosina/metabolismo , Taxa de Sobrevida
13.
Exp Hematol Oncol ; 7: 8, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29651360

RESUMO

BACKGROUND: Phosphatase of regenerating liver-3 (PRL-3) is implicated in oncogenesis of hematological and solid cancers. PRL-3 expression increases metastatic potential, invasiveness and is associated with poor prognosis. With this study, we aimed to show a possible oncogenic role of PRL-3 in classical Hodgkin lymphoma (cHL). METHODS: PRL-3 expression was measured in 25 cHL patients by immunohistochemistry and gene expression was analyzed from microdissected malignant cells. We knocked down PRL-3 in the cHL cell lines L1236 and HDLM2 and used small molecular inhibitors against PRL-3 to investigate proliferation, migration and cytokine production. RESULTS: PRL-3 protein was expressed in 16% of patient samples. In three different gene expression datasets, PRL-3 was significantly overexpressed compared to normal controls. PRL-3 knockdown reduced proliferation, viability and Mcl-1 expression in L1236, but not in HDLM2 cells. Thienopyridone, a small molecule inhibitor of PRL-3, reduced proliferation of both L1236 and HDLM2. PRL-3 affected IL-13 secretion and enhanced STAT6 signaling. IL-13 stimulation partially rescued proliferation in L1236 cells after knockdown of PRL-3. PRL-3 knockdown reduced migration in both L1236 and HDLM2 cells. CONCLUSION: PRL-3 was overexpressed in a subset of cHL patients. Inhibition of PRL-3 increased IL-13 cytokine production and reduced migration, proliferation and viability. The effects could be mediated through regulation of the anti-apoptotic molecule Mcl-1 and a feedback loop of IL-13 mediated activation of STAT6. This point to a role for PRL-3 in the pathogenesis of Hodgkin lymphoma, and PRL-3 could be a possible new drug target.

14.
Oncotarget ; 9(3): 3549-3561, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29423065

RESUMO

Phosphatase of regenerating liver-3 (PRL-3/PTP4A3) is upregulated in multiple cancers, including BCR-ABL1- and ETV6-RUNX-positive acute lymphoblastic leukemia (ALL). With this study, we aim to characterize the biological role of PRL-3 in B cell ALL (B-ALL). Here, we demonstrate that PRL-3 expression at mRNA and protein level was higher in B-ALL cells than in normal cells, as measured by qRT-PCR or flow cytometry. Further, we demonstrate that inhibition of PRL-3 using shRNA or a small molecular inhibitor reduced cell migration towards an SDF-1α gradient in the preB-ALL cell lines Reh and MHH-CALL-4. Knockdown of PRL-3 also reduced cell adhesion towards fibronectin in Reh cells. Mechanistically, PRL-3 mediated SDF-1α stimulated calcium release, and activated focal adhesion kinase (FAK) and Src, important effectors of migration and adhesion. Finally, PRL-3 expression made Reh cells more resistance to cytarabine treatment. In conclusion, the expression level of PRL-3 was higher in B-ALL cells than in normal cells. PRL-3 promoted adhesion, migration and resistance to cytarabine. PRL-3 may represent a novel target in the treatment of B-ALL.

15.
Mol Cancer Res ; 15(1): 69-77, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27698077

RESUMO

Phosphatase of regenerating liver-3 (PTP4A3/PRL-3) is a dual-specificity phosphatase that is upregulated in various types of cancers and is related to poor prognosis and aggressive tumor behavior. The expression level of PRL-3 is elevated in response to several antiapoptotic cytokines, including IL6, in cancer cells from patients with multiple myeloma (MM) and can promote survival and migration. Here, it is demonstrated that PRL-3 activates Src kinase in the IL6-dependent MM cell line INA-6. Inhibition of PRL-3 by a small-molecule inhibitor of PRL-3 or by shRNA resulted in inactivation of Src. In addition to activation of Src, PRL-3 also activated the Src family kinase (SFK) members LYN and HCK in INA-6 cells. Forced expression of catalytically inactive mutant PRL-3 decreased the activation of these three SFK members while the total level of HCK and FYN remained elevated. Inhibitors of Src increased sensitivity of cells overexpressing PRL-3 to the PRL-3 inhibitor through joint downregulation of both PRL-3 and Mcl-1. In conclusion, PRL-3 protected MM cells against apoptosis by dysregulating both the total levels and the activation levels of specific SFK members that are important for IL6 signal transduction in MM cells. Eventually, this led to increased levels of Mcl-1. IMPLICATIONS: This study suggests PRL-3 and SFKs are key mediators of the IL6-driven signaling events and points to both PRL-3 and SFK members as potential targets for treatment of MM. Mol Cancer Res; 15(1); 69-77. ©2016 AACR.


Assuntos
Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/patologia , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Quinases da Família src/metabolismo , Domínio Catalítico , Linhagem Celular Tumoral , Sobrevivência Celular , Regulação para Baixo/genética , Ativação Enzimática , Humanos , Modelos Biológicos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas de Neoplasias/química , Fosforilação , Fosfotirosina/metabolismo , Proteínas Tirosina Fosfatases/química , Fatores de Tempo
16.
Oncotarget ; 7(19): 27295-306, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27036022

RESUMO

Multiple myeloma (MM) is a neoplastic proliferation of bone marrow plasma cells. PRL-3 is a phosphatase induced by interleukin (IL)-6 and other growth factors in MM cells and promotes MM-cell migration. PRL-3 has also been identified as a marker gene for a subgroup of patients with MM. In this study we found that forced expression of PRL-3 in the MM cell line INA-6 led to increased survival of cells that were depleted of IL-6. It also caused redistribution of cells in cell cycle, with an increased number of cells in G2M-phase. Furthermore, forced PRL-3 expression significantly increased phosphorylation of Signal transducer and activator of transcription (STAT) 3 both in the presence and the absence of IL-6. Knockdown of PRL-3 with shRNA reduced survival in MM cell line INA-6. A pharmacological inhibitor of PRL-3 reduced survival in the MM cell lines INA-6, ANBL-6, IH-1, OH-2 and RPMI8226. The inhibitor also reduced survival in 9 of 9 consecutive samples of purified primary myeloma cells. Treatment with the inhibitor down-regulated the anti-apoptotic protein Mcl-1 and led to activation of the intrinsic apoptotic pathway. Inhibition of PRL-3 also reduced IL-6-induced phosphorylation of STAT3. In conclusion, our study shows that PRL-3 is an important mediator of growth factor signaling in MM cells and hence possibly a good target for treatment of MM.


Assuntos
Regulação Neoplásica da Expressão Gênica , Interleucina-6/farmacologia , Proteínas de Neoplasias/genética , Proteínas Tirosina Fosfatases/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Técnicas de Cocultura , Inibidores Enzimáticos/farmacologia , Humanos , Immunoblotting , Células-Tronco Mesenquimais/metabolismo , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Tirosina Fosfatases/metabolismo , Proteínas/farmacologia , Interferência de RNA , Fator de Transcrição STAT3/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA