Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 23(19): 6364-78, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26346671

RESUMO

Previously we reported the synthesis and in vitro evaluation of four novel, short-chain cationic lipid gene delivery vectors, characterized by acyclic or macrocyclic hydrophobic regions composed of, or derived from, two 7-carbon chains. Herein we describe a revised synthesis of an expanded library of related cationic lipids to include extended chain analogues, their formulation with plasmid DNA (pDNA) and in vitro delivery into Chinese hamster ovarian (CHO-K1) cells. The formulations were evaluated against each other based on structural differences in the hydrophobic domain and headgroup. Structurally the library is divided into four sets based on lipids derived from two 7- or two 11-carbon hydrophobic chains, C7 and C11 respectively, which possess either a dimethylamine or a trimethylamine derived headgroup. Each set includes four cationic lipids based on an acyclic or macrocyclic, saturated or unsaturated hydrophobic domain. All lipids were co-formulated with the commercial cationic lipid 1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine (EPC) in a 1:1 molar ratio, along with one of two distinct neutral co-lipids, cholesterol or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) in an overall cationic-to-neutral lipid molar ratio of 3:2. Binding of lipid formulations with DNA, and packing morphology associated with the individual lipid-DNA complexes were characterized by gel electrophoresis and small angle X-ray diffraction (SAXD), respectively. As a general trend, lipoplex formulations based on mismatched binary cationic lipids, composed of a shorter C7 lipid and the longer lipid EPC (C14), were generally associated with higher transfection efficiency and lower cytotoxicity than their more closely matched C11/EPC binary lipid formulation counterparts. Furthermore, the cyclic lipids gave transfection levels as high as or greater than their acyclic counterparts, and formulations with cholesterol exhibited higher transfection and lower cytotoxicity than those formulated with DOPE. A number of the lipid formulations with cholesterol as co-lipid performed as well as, or better than Lipofectamine 2000™ and EPC, the two positive controls employed in these studies. These results suggest that our novel cyclic and acyclic cationic lipid vectors are effective nonviral gene transfer agents that warrant further investigation.


Assuntos
Lipídeos/química , Transfecção , Animais , Células CHO , Cátions/química , Cricetinae , Cricetulus , Dimiristoilfosfatidilcolina/análogos & derivados , Dimiristoilfosfatidilcolina/química , Lipídeos/síntese química , Lipossomos/síntese química , Lipossomos/química , Lipossomos/metabolismo , Fosfatidiletanolaminas/química , Plasmídeos/genética , Plasmídeos/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X
2.
Bioorg Med Chem Lett ; 22(14): 4686-92, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22704922

RESUMO

The synthesis and in vitro evaluation of four cationic lipid gene delivery vectors, characterized by acyclic or macrocyclic, and saturated or unsaturated hydrophobic regions, is described. The synthesis employed standard protocols, including ring-closing metathesis for macrocyclic lipid construction. All lipoplexes studied, formulated from plasmid DNA and a liposome composed of a synthesized lipid, 1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine (EPC), and either 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) or cholesterol as co-lipid, exhibited plasmid DNA binding and protection from DNase I degradation, and concentration dependent cytotoxicity using Chinese hamster ovary-K1 cells. The transfection efficiency of formulations with cholesterol outperformed those with DOPE, and in many cases the EPC/cholesterol control, and formulations with a macrocyclic lipid (+/- 10:1) outperformed their acyclic counterparts (+/- 3:1).


Assuntos
Lipídeos/síntese química , Compostos Macrocíclicos/síntese química , Animais , Células CHO , Cátions/química , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Lipídeos/farmacologia , Compostos Macrocíclicos/farmacologia , Relação Estrutura-Atividade , Transfecção
3.
Molecules ; 17(2): 1138-48, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22274137

RESUMO

Duchenne Muscular Dystrophy (DMD) is a common, inherited, incurable, fatal muscle wasting disease caused by deletions that disrupt the reading frame of the DMD gene such that no functional dystrophin protein is produced. Antisense oligonucleotide (AO)-directed exon skipping restores the reading frame of the DMD gene, and truncated, yet functional dystrophin protein is expressed. The aim of this study was to assess the efficiency of two novel rigid, cationic carotenoid lipids, C30-20 and C20-20, in the delivery of a phosphorodiamidate morpholino (PMO) AO, specifically designed for the targeted skipping of exon 45 of DMD mRNA in normal human skeletal muscle primary cells (hSkMCs). The cationic carotenoid lipid/PMO-AO lipoplexes yielded significant exon 45 skipping relative to a known commercial lipid, 1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine (EPC).


Assuntos
Carotenoides/administração & dosagem , Portadores de Fármacos , Éxons , Lipídeos/administração & dosagem , Distrofia Muscular de Duchenne/tratamento farmacológico , Oligonucleotídeos Antissenso/administração & dosagem , Cátions , Eletroforese em Gel de Ágar , Humanos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Molecules ; 17(3): 3484-500, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22426529

RESUMO

The success of nucleic acid delivery requires the development of safe and efficient delivery vectors that overcome cellular barriers for effective transport. Herein we describe the synthesis of a series of novel, single-chain rigid cationic carotenoid lipids and a study of their preliminary in vitro siRNA delivery effectiveness and cellular toxicity. The efficiency of siRNA delivery by the single-chain lipid series was compared with that of known cationic lipid vectors, 3ß-[N-(N',N'-dimethylaminoethane)carbamoyl]-cholesterol (DC-Chol) and 1,2-dimyristoyl-sn-glyceryl-3-phosphoethanolamine (EPC) as positive controls. All cationic lipids (controls and single-chain lipids) were co-formulated into liposomes with the neutral co-lipid, 1,2-dioleolyl-sn-glycerol-3-phosphoethanolamine (DOPE). Cationic lipid-siRNA complexes of varying (+/-) molar charge ratios were formulated for delivery into HR5-CL11 cells. Of the five single-chain carotenoid lipids investigated, lipids 1, 2, 3 and 5 displayed significant knockdown efficiency with HR5-CL11 cells. In addition, lipid 1 exhibited the lowest levels of cytotoxicity with cell viability greater than 80% at all (+/-) molar charge ratios studied. This novel, single-chain rigid carotenoid-based cationic lipid represents a new class of transfection vector with excellent cell tolerance, accompanied with encouraging siRNA delivery efficiency.


Assuntos
Carotenoides/química , Vetores Genéticos/síntese química , Lipossomos/química , RNA Interferente Pequeno/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Vetores Genéticos/efeitos adversos , Vetores Genéticos/química , Humanos , Lipossomos/efeitos adversos , Lipossomos/síntese química , Modelos Químicos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA