Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Am J Hum Genet ; 109(4): 587-600, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35196516

RESUMO

Covalent tRNA modifications play multi-faceted roles in tRNA stability, folding, and recognition, as well as the rate and fidelity of translation, and other cellular processes such as growth, development, and stress responses. Mutations in genes that are known to regulate tRNA modifications lead to a wide array of phenotypes and diseases including numerous cognitive and neurodevelopmental disorders, highlighting the critical role of tRNA modification in human disease. One such gene, THUMPD1, is involved in regulating tRNA N4-acetylcytidine modification (ac4C), and recently was proposed as a candidate gene for autosomal-recessive intellectual disability. Here, we present 13 individuals from 8 families who harbor rare loss-of-function variants in THUMPD1. Common phenotypic findings included global developmental delay, speech delay, moderate to severe intellectual deficiency, behavioral abnormalities such as angry outbursts, facial dysmorphism, and ophthalmological abnormalities. We demonstrate that the bi-allelic variants identified cause loss of function of THUMPD1 and that this defect results in a loss of ac4C modification in small RNAs, and of individually purified tRNA-Ser-CGA. We further corroborate this effect by showing a loss of tRNA acetylation in two CRISPR-Cas9-generated THUMPD1 KO cell lines. In addition, we also show the resultant amino acid substitution that occurs in a missense THUMPD1 allele identified in an individual with compound heterozygous variants results in a marked decrease in THUMPD1 stability and RNA-binding capacity. Taken together, these results suggest that the lack of tRNA acetylation due to THUMPD1 loss of function results in a syndromic form of intellectual disability associated with developmental delay, behavioral abnormalities, hearing loss, and facial dysmorphism.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Proteínas de Ligação a RNA , Acetilação , Alelos , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Mutação/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , RNA/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
2.
J Allergy Clin Immunol ; 144(2): 574-583.e5, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30872117

RESUMO

BACKGROUND: The tumor TNF receptor family member 4-1BB (CD137) is encoded by TNFRSF9 and expressed on activated T cells. 4-1BB provides a costimulatory signal that enhances CD8+ T-cell survival, cytotoxicity, and mitochondrial activity, thereby promoting immunity against viruses and tumors. The ligand for 4-1BB is expressed on antigen-presenting cells and EBV-transformed B cells. OBJECTIVE: We investigated the genetic basis of recurrent sinopulmonary infections, persistent EBV viremia, and EBV-induced lymphoproliferation in 2 unrelated patients. METHODS: Whole-exome sequencing, immunoblotting, immunophenotyping, and in vitro assays of lymphocyte and mitochondrial function were performed. RESULTS: The 2 patients shared a homozygous G109S missense mutation in 4-1BB that abolished protein expression and ligand binding. The patients' CD8+ T cells had reduced proliferation, impaired expression of IFN-γ and perforin, and diminished cytotoxicity against allogeneic and HLA-matched EBV-B cells. Mitochondrial biogenesis, membrane potential, and function were significantly reduced in the patients' activated T cells. An inhibitory antibody against 4-1BB recapitulated the patients' defective CD8+ T-cell activation and cytotoxicity against EBV-infected B cells in vitro. CONCLUSION: This novel immunodeficiency demonstrates the critical role of 4-1BB costimulation in host immunity against EBV infection.


Assuntos
Infecções por Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4/imunologia , Transtornos Linfoproliferativos/imunologia , Mutação de Sentido Incorreto , Doenças da Imunodeficiência Primária/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Linfócitos B/imunologia , Linfócitos B/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Pré-Escolar , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/patologia , Feminino , Herpesvirus Humano 4/genética , Humanos , Transtornos Linfoproliferativos/genética , Transtornos Linfoproliferativos/patologia , Transtornos Linfoproliferativos/virologia , Masculino , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/patologia , Doenças da Imunodeficiência Primária/virologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA