Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLOS Glob Public Health ; 3(12): e0001711, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38153908

RESUMO

Vaccines are one of the most effective tools humanity has in the fight against pandemics. One of the major challenges of vaccine distribution is achieving fair and equitable allocation across the countries of the world, regardless of their economic wealth. The self-interested behaviour of high-income countries and the underutilisation of vaccines allocated to underprepared countries are some of the failures reported during COVID-19 vaccine roll-out. These shortcomings have motivated the need for a central market mechanism that takes into account the countries' vulnerability to COVID-19 and their readiness to distribute and administer their allocated vaccines. In this paper, we leverage game theory to study the problem of equitable global vaccine distribution and propose a fair market mechanism that aligns self-interested behaviour with optimal global objectives. First, we model the interaction between a central vaccine provider (e.g. COVAX) and a country reporting its demand as a two-player game, and discuss the Nash and mixed Nash equilibria of that game. Then, we propose a repeated auction mechanism with an artificial payment system for allocating vaccines among participating countries, where each auction round is based on a Vickrey-Clarke-Groves (VCG) mechanism. The proposed allocation mechanism aims at minimising deaths and incentivises the self-interested countries to report their demand truthfully. Compared with real-world COVAX allocation decisions, our results show that the proposed auction mechanism achieves more efficient outcomes that maximise the number of averted deaths. Pragmatic considerations are investigated and policy recommendations are discussed.

2.
PLoS One ; 16(2): e0246110, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33524057

RESUMO

Since the outbreak of the COVID-19 pandemic, many healthcare facilities have suffered from shortages in medical resources, particularly in Personal Protective Equipment (PPE). In this paper, we propose a game-theoretic approach to schedule PPE orders among healthcare facilities. In this PPE game, each independent healthcare facility optimises its own storage utilisation in order to keep its PPE cost at a minimum. Such a model can reduce peak demand considerably when applied to a variable PPE consumption profile. Experiments conducted for NHS England regions using actual data confirm that the challenge of securing PPE supply during disasters such as COVID-19 can be eased if proper stock management procedures are adopted. These procedures can include early stockpiling, increasing storage capacities and implementing measures that can prolong the time period between successive infection waves, such as social distancing measures. Simulation results suggest that the provision of PPE dedicated storage space can be a viable solution to avoid straining PPE supply chains in case a second wave of COVID-19 infections occurs.


Assuntos
COVID-19/epidemiologia , Surtos de Doenças , Teoria dos Jogos , Equipamento de Proteção Individual/provisão & distribuição , Simulação por Computador , Geografia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA