Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 24(6): e56818, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37042686

RESUMO

Immature dendritic cells (iDCs) migrate in microenvironments with distinct cell and extracellular matrix densities in vivo and contribute to HIV-1 dissemination and mounting of antiviral immune responses. Here, we find that, compared to standard 2D suspension cultures, 3D collagen as tissue-like environment alters iDC properties and their response to HIV-1 infection. iDCs adopt an elongated morphology with increased deformability in 3D collagen at unaltered activation, differentiation, cytokine secretion, or responsiveness to LPS. While 3D collagen reduces HIV-1 particle uptake by iDCs, fusion efficiency is increased to elevate productive infection rates due to elevated cell surface exposure of the HIV-1-binding receptor DC-SIGN. In contrast, 3D collagen reduces HIV transfer to CD4 T cells from iDCs. iDC adaptations to 3D collagen include increased pro-inflammatory cytokine production and reduced antiviral gene expression in response to HIV-1 infection. Adhesion to a 2D collagen matrix is sufficient to increase iDC deformability, DC-SIGN exposure, and permissivity to HIV-1 infection. Thus, mechano-physical cues of 2D and 3D tissue-like collagen environments regulate iDC function and shape divergent roles during HIV-1 infection.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Citocinas/metabolismo , Colágeno/metabolismo , Antivirais , Células Dendríticas
2.
Eur J Cell Biol ; 103(2): 151428, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38850712

RESUMO

Actin organization is crucial for establishing cell polarity, which influences processes such as directed cell motility and division. Despite its critical role in living organisms, achieving similar polarity in synthetic cells remains challenging. In this study, we employ a bottom-up approach to investigate how molecular crowders facilitate the formation of cortex-like actin networks and how these networks localize and organize based on membrane shape. Using giant unilamellar vesicles (GUVs) as models for cell membranes, we show that actin filaments can arrange along the membrane to form cortex-like structures. Notably, this organization is achieved using only actin and crowders as a minimal set of components. We utilize surface micropatterning to examine actin filament organization in deformed GUVs adhered to various pattern shapes. Our findings indicate that at the periphery of spherical GUVs, actin bundles align along the membrane. However, in highly curved regions of adhered GUVs, actin bundles avoid crossing the highly curved edges perpendicular to the adhesion site and instead remain in the lower curved regions by aligning parallel to the micropatterned surface. Furthermore, the actin bundles increase the stiffness of the GUVs, effectively counteracting strong deformations when GUVs adhere to micropatterns. This finding is corroborated by real-time deformability cytometry on GUVs with synthetic actin cortices. By precisely manipulating the shape of GUVs, our study provides a minimal system to investigate the interplay between actin structures and the membrane. Our findings provide insights into the spatial organization of actin structures within crowded environments, specifically inside GUVs that resemble the size and shape of cells. This study advances our understanding of actin network organization and functionality within cell-sized compartments.


Assuntos
Citoesqueleto de Actina , Membrana Celular , Lipossomas Unilamelares , Citoesqueleto de Actina/metabolismo , Lipossomas Unilamelares/metabolismo , Lipossomas Unilamelares/química , Membrana Celular/metabolismo , Actinas/metabolismo , Animais
3.
Adv Sci (Weinh) ; : e2401110, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864352

RESUMO

Multi-photon 3D laser printing has gathered much attention in recent years as a means of manufacturing biocompatible scaffolds that can modify and guide cellular behavior in vitro. However, in vivo tissue engineering efforts have been limited so far to the implantation of beforehand 3D printed biocompatible scaffolds and in vivo bioprinting of tissue constructs from bioinks containing cells, biomolecules, and printable hydrogel formulations. Thus, a comprehensive 3D laser printing platform for in vivo and in situ manufacturing of microimplants raised from synthetic polymer-based inks is currently missing. Here, a platform for minimal-invasive manufacturing of microimplants directly in the organism is presented by one-photon photopolymerization and multi-photon 3D laser printing. Employing a commercially available elastomeric ink giving rise to biocompatible synthetic polymer-based microimplants, first applicational examples of biological responses to in situ printed microimplants are demonstrated in the teleost fish Oryzias latipes and in embryos of the fruit fly Drosophila melanogaster. This provides a framework for future studies addressing the suitability of inks for in vivo 3D manufacturing. The platform bears great potential for the direct engineering of the intricate microarchitectures in a variety of tissues in model organisms and beyond.

4.
Adv Mater ; 34(6): e2106709, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34800321

RESUMO

Toward the ambitious goal of manufacturing synthetic cells from the bottom up, various cellular components have already been reconstituted inside lipid vesicles. However, the deterministic positioning of these components inside the compartment has remained elusive. Here, by using two-photon 3D laser printing, 2D and 3D hydrogel architectures are manufactured with high precision and nearly arbitrary shape inside preformed giant unilamellar lipid vesicles (GUVs). The required water-soluble photoresist is brought into the GUVs by diffusion in a single mixing step. Crucially, femtosecond two-photon printing inside the compartment does not destroy the GUVs. Beyond this proof-of-principle demonstration, early functional architectures are realized. In particular, a transmembrane structure acting as a pore is 3D printed, thereby allowing for the transport of biological cargo, including DNA, into the synthetic compartment. These experiments show that two-photon 3D laser microprinting can be an important addition to the existing toolbox of synthetic biology.


Assuntos
Células Artificiais , Lasers , Impressão Tridimensional , Biologia Sintética , Lipossomas Unilamelares
5.
Nat Commun ; 12(1): 3967, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172734

RESUMO

Bottom-up and top-down approaches to synthetic biology each employ distinct methodologies with the common aim to harness living systems. Here, we realize a strategic merger of both approaches to convert light into proton gradients for the actuation of synthetic cellular systems. We genetically engineer E. coli to overexpress the light-driven inward-directed proton pump xenorhodopsin and encapsulate them in artificial cell-sized compartments. Exposing the compartments to light-dark cycles, we reversibly switch the pH by almost one pH unit and employ these pH gradients to trigger the attachment of DNA structures to the compartment periphery. For this purpose, a DNA triplex motif serves as a nanomechanical switch responding to the pH-trigger of the E. coli. When DNA origami plates are modified with the pH-sensitive triplex motif, the proton-pumping E. coli can trigger their attachment to giant unilamellar lipid vesicles (GUVs) upon illumination. A DNA cortex is formed upon DNA origami polymerization, which sculpts and deforms the GUVs. We foresee that the combination of bottom-up and top down approaches is an efficient way to engineer synthetic cells.


Assuntos
DNA Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Genética/métodos , Prótons , DNA Bacteriano/química , Concentração de Íons de Hidrogênio , Luz , Microrganismos Geneticamente Modificados , Bombas de Próton/genética , Bombas de Próton/metabolismo , Rodopsina/genética , Rodopsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA